
 1 /**/
 2 /* LEDのダイナミック点灯 */
 3 /**/
 4
 5 #include <stdlib.h>
 6 #include "typedefine.h"
 7 #include "iodefine.h"
 8
 9 注：７セグメントLEDの表示パターンSEGPTN_xxと、記号表示LEDの表示パターンLED_xxxxの
 10 　　宣言は省略してあります。
 11
 12 #pragma section
 13 /* ７セグメント表示パターン ***/
 14 /* */
 15 /* _a_ .gfedcba */
 16 /* f| |b [76543210] */
 17 /* |_g_| 00111111 : 0 */
 18 /* e| |c 00000110 : 1 */
 19 /* |_d_| 01011011 : 2 */
 20 /* 01001111 : 3 */
 21 /* 01100110 : 4 */
 22 /* 01101101 : 5 */
 23 /* 01111101 : 6 */
 24 /* 00000111 : 7 */
 25 /* 01111111 : 8 */
 26 /* 01101111 : 9 */
 27 /* 01011111 : a */
 28 /* 01111100 : b */
 29 /* 01011000 : c */
 30 /* 01011110 : d */
 31 /* 01111001 : e */
 32 /* 01110001 : f */
 33 /* 01111000 : t */
 34 /* 01101101 : S */
 35 /* 01010100 : n */
 36
 37 /* ７セグメント表示バッファ ***/
 38 #define DIGI_MAX (5)
 39 typedef union {
 40 BYTE BYTE;
 41 struct {
 42 BYTE COLH:1; /* b7:コロン（上） */
 43 BYTE COLL:1; /* b6:コロン（下） */
 44 BYTE AM:1; /* b5:AM */
 45 BYTE PM:1; /* b4:PM */
 46 BYTE ALM:1; /* b3:Alarm */
 47 BYTE TEMP:1; /* b2:Temperature */
 48 BYTE ALMON:1; /* b1:Alarm ON */
 49 BYTE YOBI:1; /* b0:（予備） */
 50 } BIT;
 51 } COLON;
 52 typedef union {
 53 BYTE buff[DIGI_MAX];
 54 struct {
 55 BYTE M01; /* D0:分 1位 */
 56 BYTE M10; /* D1:分10位 */
 57 BYTE H01; /* D2:時 1位 */
 58 BYTE H10; /* D3:時10位 */
 59 COLON COL; /* D4:コロン・項目 */
 60 } Digi;
 61 } FRMBUFF;
 62
 63 static FRMBUFF Segment;
 64
 65 /* 16進数→７セグパターン変換表 **/
 66 static const BYTE HexDecimalPtn[16]={
 67 SEGPTN_0,
 68 SEGPTN_1,
 69 SEGPTN_2,
 70 SEGPTN_3,
 71 SEGPTN_4,
 72 SEGPTN_5,
 73 SEGPTN_6,
 74 SEGPTN_7,
 75 SEGPTN_8,
 76 SEGPTN_9,
 77 SEGPTN_A,
 78 SEGPTN_b,
 79 SEGPTN_C,
 80 SEGPTN_d,
 81 SEGPTN_E,
 82 SEGPTN_F,
 83 };
 84

 85 /* バイナリ→10進数変換表 ***/
 86 static const WORD awDigiConst[5]={10000,1000,100,10,1};
 87
 88 /* ７セグメント表示スキャンビットパターン *************************************/
 89 static const BYTE abyDigiPtn[DIGI_MAX]={0xFE, 0xFD, 0xFB, 0xF7, 0xEF};
 90
 91 /**/
 92 /* 表示バッファSegmentの内容をダイナミック表示 */
 93 /**/
 94 /* ※2mS周期割り込みから呼ばれる。 */
 95 /* ※割り込みマスク状態で実行すること。 */
 96 #pragma abs8(byDigCnt)
 97 static BYTE byDigCnt;
 98
 99 /* LED表示OFF */
 100 void ScanLED_off(void)
 101 {
 102 /* 表示OFF（Source Driver OFF） */
 103 IO.PDR5.BYTE = 0x1F; /* P54～P50:Hi出力 （全消灯） */
 104 IO.PDR8.BYTE = 0x00; /* P87～P80:Low出力（全消灯） */
 105 }
 106
 107 /* LED表示ON */
 108 void ScanLED_on(void)
 109 {
 110 /* 表示桁位置を次へ */
 111 byDigCnt++;
 112 if(byDigCnt >= DIGI_MAX)
 113 byDigCnt = 0;
 114 /* 新しい桁位置のパターンを表示 */
 115 IO.PDR8.BYTE = Segment.buff[byDigCnt]; /* P87～P80:セグメントパターン出力 */
 116 /* 表示ON（Source Driver ON） */
 117 IO.PDR5.BYTE = abyDigiPtn[byDigCnt]; /* P54～P50:順次Low出力 */
 118 }
 119
 120 /**/
 121 /* 表示支援関数 */
 122 /**/
 123
 124 /* ディスプレイ制御の初期化 **/
 125
 126 void InitDispLED(void)
 127 {
 128 /* I/O ポート５ */
 129 IO.PUCR5.BYTE = 0x00; /* P55～P50:プルアップ抵抗無効 */
 130 IO.PDR5.BYTE = 0x1F; /* P54～P50:Hi出力（全消灯） */
 131 IO.PMR5.BYTE = 0x00; /* P55～P50:汎用ポート */
 132 IO.PCR5 = 0x1F; /* P57,P56:0のみ可、P55:入力ポート、P54～P50:出力ポート */
 133 /* I/O ポート８ */
 134 IO.PDR8.BYTE = 0x00; /* P87～P80:Low出力（全消灯） */
 135 IO.PCR8 = 0xFF; /* P87～P80:出力ポート */
 136 /* タイマＷ */
 137 TW.TIOR0.BYTE = 0x88; /* P82:FTIOB出力無効、P81:FTIOA出力無効 */
 138 TW.TIOR1.BYTE = 0x88; /* P84:FTIOD出力無効、P83:FTIOC出力無効 */
 139
 140 byDigCnt = 0; /* スキャン桁＝０が初期値 */
 141 }
 142
 143 /* 全LED点灯または消灯 ***/
 144
 145 void DispAllLED(BYTE bySW)
 146 {
 147 WORD wLpcnt;
 148
 149 if(bySW != 0){
 150 bySW = 0xFF;
 151 }
 152 wLpcnt = 0;
 153 do{
 154 Segment.buff[wLpcnt] = bySW;
 155 }while(++wLpcnt < DIGI_MAX);
 156 }
 157
 158 /* 記号表示LEDの表示 ***/
 159
 160 void DispIndicator(BYTE byLedPtn)
 161 {
 162 Segment.Digi.COL.BYTE = byLedPtn;
 163 }
 164
 165 /* 記号表示LEDの点灯 ***/
 166
 167 void DispIndicatorON(BYTE byLedPtn)
 168 {

 169 Segment.Digi.COL.BYTE |= byLedPtn;
 170 }
 171
 172 /* 記号表示LEDの消灯 ***/
 173
 174 void DispIndicatorOFF(BYTE byLedPtn)
 175 {
 176 Segment.Digi.COL.BYTE &= (BYTE)(~byLedPtn);
 177 }
 178
 179 /* ７セグメント表示消去 **/
 180 /* ※小数点とコロンも消去。 */
 181
 182 void DispClr7Seg(void)
 183 {
 184 int nLpcnt;
 185
 186 /* ７セグメントを消去 */
 187 nLpcnt = 0;
 188 do{
 189 Segment.buff[nLpcnt] = SEGPTN_SP;
 190 }while(++nLpcnt < DIGI_MAX-1);
 191 /* コロン消去 */
 192 Segment.Digi.COL.BYTE &= (BYTE)(~(LED_COLH | LED_COLL));
 193 }
 194
 195 /* 小数点の表示 **/
 196 /* 引数 : byDPptn = [76543210] */
 197 /* : |||||||| '1'で点灯 */
 198 /* : xxxx||||_0_ 最も右桁 */
 199 /* : |||__1_ 左から３桁目 */
 200 /* : ||___2_ 左から２桁目 */
 201 /* : |____3_ 最も左側 */
 202 /* 戻値 : なし */
 203
 204 void DispDecPoint(BYTE byDPptn)
 205 {
 206 BYTE *pbyTgt;
 207 int nLpcnt;
 208
 209 /* 表示 */
 210 pbyTgt = &Segment.buff[0];
 211 nLpcnt = 0;
 212 do{
 213 if((byDPptn & 0x01) != 0)
 214 *pbyTgt |= 0x80;
 215 else
 216 *pbyTgt &= 0x7F;
 217 pbyTgt++;
 218 byDPptn >>= 1;
 219 }while(++nLpcnt < DIGI_MAX-1);
 220 }
 221
 222 /* 指定の表示部に４桁の任意パターン表示 **************************************/
 223 /* ※小数点は上書きされる。 */
 224
 225 void DispSegP4(BYTE *pbyPtn)
 226 {
 227 BYTE *pbyTgt;
 228 WORD wLpcnt;
 229
 230 /* 表示 */
 231 pbyTgt = &Segment.buff[4];
 232 wLpcnt = 0;
 233 do{
 234 *(--pbyTgt) = *(pbyPtn++); /* 小数点はすべて上書き */
 235 }while(++wLpcnt < DIGI_MAX-1);
 236 }
 237
 238 /* 指定の表示部に指定桁の任意パターン表示 ************************************/
 239 /* ※小数点は保存される。 */
 240
 241 void DispSegPattern(BYTE byDigit, BYTE byWidth, BYTE *pbyPtn)
 242 {
 243 BYTE *pbyTgt;
 244 WORD wLpcnt;
 245
 246 /* 指定桁のチェック */
 247 if(byDigit > (DIGI_MAX-2)) byDigit = (DIGI_MAX-2);
 248 if((byDigit + byWidth) > (DIGI_MAX-1))
 249 byWidth = (BYTE)((DIGI_MAX-1) - byDigit);
 250 /* 表示 */
 251 pbyTgt = &Segment.buff[(DIGI_MAX-1) - byDigit];
 252 wLpcnt = 0;

 253 do{
 254 --pbyTgt;
 255 *pbyTgt = (BYTE)((*pbyTgt & 0x80) | *(pbyPtn++));
 256 }while(++wLpcnt < (WORD)byWidth);
 257 }
 258
 259 /* 指定の表示部に16進４桁で数値表示 **/
 260 /* ※小数点は保存されない。 */
 261
 262 void DispSegH4Word(WORD wData)
 263 {
 264 BYTE *pbyTgt;
 265 WORD wHex;
 266 int nLpcnt;
 267
 268 /* 16進変換→表示バッファにコピー */
 269 pbyTgt = &Segment.buff[0];
 270 nLpcnt = 0;
 271 do{
 272 wHex = (WORD)(wData & 0x000F);
 273 *(pbyTgt++) = HexDecimalPtn[wHex];
 274 wData >>= 4;
 275 }while(++nLpcnt < DIGI_MAX-1);
 276 }
 277
 278 /* 指定の表示部に10進で数値４桁表示 **/
 279 /* ※小数点は保存される。 */
 280
 281 void DispSegD4Word(BYTE bySuppress, WORD wData)
 282 {
 283 BYTE abyBuff[6];
 284 WORD *pwConst;
 285 BYTE *pbyData,*pbyTgt;
 286 WORD wDigit,wAns;
 287
 288 /* 10進数変換＆セグメントパターン変換（５桁） */
 289 pbyData = &abyBuff[0];
 290 pwConst = &awDigiConst[0];
 291 wDigit = 0;
 292 do{
 293 wAns = wData / *pwConst;
 294 wData = wData % *pwConst;
 295 pwConst++;
 296 *(pbyData++) = HexDecimalPtn[wAns];
 297 }while(++wDigit < 4);
 298 *pbyData = HexDecimalPtn[wData];
 299 /* ゼロサプレス */
 300 if(bySuppress != 0){
 301 pbyData = &abyBuff[0];
 302 wDigit = 0;
 303 do{
 304 if(*pbyData != SEGPTN_0) break;
 305 *(pbyData++) = SEGPTN_SP;
 306 }while(++wDigit < 4);
 307 }
 308 /* 対象の表示バッファアドレスセット */
 309 pbyTgt = &Segment.buff[DIGI_MAX-1];
 310 /* ７セグパターンで表示バッファにコピー（下位４ケタ） */
 311 pbyData = &abyBuff[1];
 312 wDigit = 0;
 313 do{
 314 --pbyTgt;
 315 *pbyTgt = (BYTE)((*pbyTgt & 0x80) | *(pbyData++));
 316 }while(++wDigit < DIGI_MAX-1);
 317 }
 318
 319 /* 指定の表示部に10進で２桁数値表示 **/
 320 /* ※小数点は保存される。 */
 321
 322 void DispSegD2Byte(BYTE byDigit, BYTE bySuppress, BYTE byData)
 323 {
 324 BYTE abyBuff[4];
 325 WORD *pwConst;
 326 BYTE *pbyData,*pbyTgt;
 327 WORD wDigit;
 328 BYTE byAns;
 329
 330 /* 桁位置チェック */
 331 if(byDigit > 2) byDigit = 2;
 332 /* 10進数変換＆セグメントパターン変換（３桁） */
 333 pbyData = &abyBuff[0];
 334 pwConst = &awDigiConst[2];
 335 wDigit = 0;
 336 do{

 337 byAns = (BYTE)(byData / *pwConst);
 338 byData = (BYTE)(byData % *pwConst);
 339 pwConst++;
 340 *(pbyData++) = HexDecimalPtn[byAns];
 341 }while(++wDigit < 2);
 342 *pbyData = HexDecimalPtn[byData];
 343 /* ゼロサプレス */
 344 if(bySuppress != 0){
 345 pbyData = &abyBuff[0];
 346 wDigit = 0;
 347 do{
 348 if(*pbyData != SEGPTN_0) break;
 349 *(pbyData++) = SEGPTN_SP;
 350 }while(++wDigit < 2);
 351 }
 352
 353 /* 対象の表示バッファアドレスセット */
 354 pbyTgt = &Segment.buff[(DIGI_MAX-1) - byDigit - 2];
 355 /* ７セグパターンで表示バッファに下位からコピー（下位２ケタ） */
 356 pbyData = &abyBuff[3];
 357 wDigit = 0;
 358 do{
 359 --pbyData;
 360 *pbyTgt = (BYTE)((*pbyTgt & 0x80) | *pbyData);
 361 pbyTgt++;
 362 }while(++wDigit < 2);
 363 }
 364
 365 /* 指定の表示部に符号付き10進で数値表示 **************************************/
 366
 367 void DispSegF4Word(BYTE byPoint, short nData)
 368 {
 369 BYTE abyBuff[DIGI_MAX+1];
 370 WORD *pwConst;
 371 BYTE *pbyData,*pbyTgt;
 372 WORD wDigit,wPoint,wAns,wData;
 373 BOOL bMinus;
 374
 375 /* 小数点位置指定の変換 */
 376 wPoint = (DIGI_MAX-1) - (WORD)byPoint;
 377 /* 符号を取り出して正数化する */
 378 if(bMinus = (nData < 0))
 379 wData = (WORD)(0 - nData);
 380 else
 381 wData = (WORD)nData;
 382 /* 10進数変換＆セグメントパターン変換 */
 383 pbyData = &abyBuff[0];
 384 pwConst = &awDigiConst[0];
 385 wDigit = 0;
 386 do{
 387 wAns = wData / *pwConst;
 388 wData = wData % *pwConst;
 389 pwConst++;
 390 *(pbyData++) = HexDecimalPtn[wAns];
 391 }while(++wDigit < 4);
 392 *pbyData = HexDecimalPtn[wData];
 393 /* ゼロサプレス */
 394 pbyData = &abyBuff[0];
 395 for(wDigit = 0;(wDigit < (DIGI_MAX-1)) && (wDigit < wPoint);wDigit++){
 396 if(*pbyData != SEGPTN_0) break;
 397 *(pbyData++) = SEGPTN_SP;
 398 }
 399 /* マイナス表示 */
 400 if((wDigit != 0) && (bMinus != FALSE)){
 401 *(pbyData-1) = SEGPTN_MN;
 402 }
 403 /* 対象の表示バッファアドレスセット */
 404 pbyTgt = &Segment.buff[DIGI_MAX-1];
 405 /* ７セグパターンで表示バッファにコピー */
 406 pbyData = &abyBuff[1];
 407 wDigit = 1;
 408 do{
 409 --pbyTgt;
 410 if(wDigit == wPoint)
 411 *pbyTgt = (BYTE)(*pbyData | 0x80); /* 小数点を追加 */
 412 else
 413 *pbyTgt = *pbyData;
 414 pbyData++;
 415 }while(++wDigit < 5);
 416 }
 417
 418 /* 指定の表示部にオーバーフロー／アンダーフロー表示 **************************/
 419
 420 void DispOverFlow(BOOL bOver)

 421 {
 422 static const BYTE ptnOver[4]={SEGPTN_SP,SEGPTN_OV,SEGPTN_OV,SEGPTN_OV};
 423 static const BYTE ptnUnder[4]={SEGPTN_SP,SEGPTN_UN,SEGPTN_UN,SEGPTN_UN};
 424
 425 /* バーを表示 */
 426 if(bOver)
 427 DispSegP4(ptnOver);
 428 else
 429 DispSegP4(ptnUnder);
 430 }
 431
 432 /* 指定の表示部にMM.DDまたはhh:mmを10進で表示 ********************************/
 433
 434 void DispSegD4DTime(BOOL bDate, BYTE *pData)
 435 {
 436 BYTE byDat,byDec;
 437 BYTE abyBuff[DIGI_MAX-1];
 438 BYTE *pbyData,*pbyTgt;
 439 int nLpcnt;
 440
 441 /* 10進数→セグメントパターンに変換 */
 442 pbyData = &abyBuff[0];
 443 nLpcnt = 0;
 444 do{
 445 /* 10進変換 */
 446 byDat = *(pData++);
 447 if(byDat > 99) byDat = 99;
 448 byDec = (BYTE)(byDat / 10);
 449 byDat = (BYTE)(byDat % 10);
 450 /* 10位 */
 451 if(byDec == 0 && (nLpcnt == 0 || bDate != FALSE))
 452 *(pbyData++) = 0; /* blank */
 453 else
 454 *(pbyData++) = HexDecimalPtn[byDec];
 455 /* 1位 */
 456 *(pbyData++) = HexDecimalPtn[byDat];
 457 }while(++nLpcnt < 2);
 458 /* 対象の表示バッファアドレスセット */
 459 pbyTgt = &Segment.buff[DIGI_MAX-1];
 460 /* 表示バッファにコピー */
 461 pbyData = &abyBuff[0];
 462 nLpcnt = 0;
 463 do{
 464 --pbyTgt;
 465 if((nLpcnt == 1) && (bDate != FALSE))
 466 *pbyTgt = (BYTE)(*pbyData | 0x80); /* 小数点を追加 */
 467 else
 468 *pbyTgt = *pbyData;
 469 pbyData++;
 470 }while(++nLpcnt < DIGI_MAX-1);
 471 /* コロンの表示・消去 */
 472 if(bDate)
 473 Segment.Digi.COL.BYTE &= (BYTE)~(LED_COLL|LED_COLH);
 474 else
 475 Segment.Digi.COL.BYTE |= (LED_COLL|LED_COLH);
 476 }

