
 1 /**/
 2 /* IICインタフェースの制御 */
 3 /**/
 4 /* ※割り込みは不使用 */
 5
 6 #include <machine.h>
 7 #include <stdlib.h>
 8 #include "typedefine.h"
 9 #include "iodefine.h"
 10
 11
 12 /**/
 13 /* ICCR1のCKS2～CKS0にセットするコード **/
 14 /* φ=20MHz */
 15 #define RATE_714 (0) /* φ/ 28 = 714kHz */
 16 #define RATE_500 (1) /* φ/ 40 = 500kHz */
 17 #define RATE_417 (2) /* φ/ 48 = 417kHz */
 18 #define RATE_313 (3) /* φ/ 64 = 313kHz */
 19 #define RATE_250 (4) /* φ/ 80 = 250kHz */
 20 #define RATE_200 (5) /* φ/100 = 200kHz */
 21 #define RATE_179 (6) /* φ/112 = 179kHz */
 22 #define RATE_156 (7) /* φ/128 = 156kHz */
 23 #define RATE_357 (8) /* φ/ 56 = 357kHz */
 24 //#define RATE_250 (9) /* φ/ 80 = 250kHz */
 25 #define RATE_208 (10) /* φ/ 96 = 208kHz */
 26 //#define RATE_156 (11) /* φ/128 = 156kHz */
 27 #define RATE_125 (12) /* φ/160 = 125kHz */
 28 #define RATE_100 (13) /* φ/200 = 100kHz */
 29 #define RATE_89 (14) /* φ/224 = 89.3kHz */
 30 #define RATE_78 (15) /* φ/256 = 78.1kHz */
 31 #define RATE_USE RATE_250 /* 使用する転送速度 */
 32
 33 /**/
 34
 35 #define READ_MODE (0)
 36 #define WRITE_MODE (1)
 37
 38 /**/
 39
 40 #pragma abs8(bySlaveID)
 41 static BYTE bySlaveID; /* 相手（スレーブ）のアドレス */
 42
 43 /* ソフトウェアタイマの時間 ***/
 44
 45 #define WAIT_100mS (80000) /* 約100mS */
 46 #define WAIT_50mS (40000) /* 約 50mS */
 47 #define WAIT_10mS (8000) /* 約 10mS */
 48 #define WAIT_1mS (800) /* 約 1mS */
 49 #define WAIT_500uS (400) /* 約500uS */
 50 #define WAIT_200uS (160) /* 約200uS */
 51 #define WAIT_100uS (80) /* 約100uS */
 52
 53 #pragma section
 54 /**/
 55 /* IICインタフェース初期化 */
 56 /**/
 57 /* 備考 : H8/3694では、P57,P56はICCR1のICE=1でSCL,SDA端子になる。 */
 58
 59 static void iic2_init(BYTE bySlaveAddr)
 60 {
 61 /* （相手）スレーブアドレス保存 */
 62 bySlaveID = bySlaveAddr;
 63 /* IICリセット */
 64 IIC2.ICCR2.BIT.IICRST = 1;
 65 IIC2.ICCR2.BIT.IICRST = 0;
 66 /* 送受信モード，転送速度設定 */
 67 IIC2.ICCR1.BYTE = 0x80 | RATE_USE; /* ICE=1:バスイネーブル、RCVD=0:受信継続、MST=0,TRS=0:スレーブ受
 信モード、CKS=4:転送クロック */
 68 /* 転送モード設定 */
 69 IIC2.ICMR.BYTE = 0x30; /* MLS=0:MSBファースト、WAIT=0:DATAとACK連続転送、BCWP=BC2～BC0
 の書き込み可、BC2～BC0:９ビット転送 */
 70 IIC2.ICMR.BIT.BCWP = 1; /* BCWP=BC2～BC0の書き込み禁止 */
 71 /* 割り込みモード設定 */
 72 IIC2.ICIER.BYTE = 0x00; /* TIE=0:送信割り込み禁止、TEIE=0:送信終了割り込み禁止、RIE=0:受
 信割り込み禁止、NAKIE=0:NAK受信割り込み禁止 */
 73 /* STIE=0:停止条件検出割り込み禁止、ACKE=0:アクノリッジを無視す
 る */
 74 /* 全ステータスクリア */
 75 if(IIC2.ICSR.BYTE); /* ICSR読み込み */
 76 IIC2.ICSR.BYTE = 0x00; /* ACKB=0,全ステータスビットクリア */
 77 /* 転送フォーマット選択 */
 78 IIC2.SAR.BYTE = 0x00; /* 自局アドレス=0x00、FS=0:IICフォーマット選択 */
 79 }
 80

 81 /**/
 82 /* IICインタフェースによる送受信（割り込み不使用） */
 83 /**/
 84
 85 /* スタートコンディション＋スレーブアドレス **********************************/
 86
 87 static BOOL iic2_start(BYTE byFirst, BYTE byWrite)
 88 {
 89 WORD wWaitCnt;
 90 BOOL bResult;
 91 BYTE byAddr,byTry;
 92
 93 /* 最初のみバスの開放を待つ（BUSYなら待つ） */
 94 if(byFirst != 0){
 95 byTry = 20;
 96 wWaitCnt = WAIT_10mS;
 97 while(IIC2.ICCR2.BIT.BBSY != 0){
 98 if(--wWaitCnt == 0){
 99 if(--byTry == 0){
 100 return FALSE;
 101 }
 102 wWaitCnt = WAIT_10mS;
 103 }
 104 }
 105 }
 106
 107 /* R/Wを加えたスレーブアドレス作成 */
 108 byAddr = bySlaveID;
 109 if(byWrite == READ_MODE)
 110 byAddr |= 0x01;
 111 /* スレーブアドレス送信 */
 112 bResult = FALSE;
 113 byTry = 0;
 114 do{
 115 /* マスター送信モード指定 */
 116 IIC2.ICCR1.BYTE = 0xB0 | RATE_USE; /* ICE=1:バスイネーブル、RCVD=0:受信継続、MST=1,TRS=1:マスタ
 ー送信モード、CKS=4:転送クロック */
 117 /* 開始条件発行 */
 118 IIC2.ICCR2.BYTE = 0xBD; /* BBSY=1,SCP=0:開始条件発行、SDAO=1,SDAOP=1:SDA出力制御なし
 、IICRST=0:IICリセット無効 */
 119 /* 送信エンプティを待つ */
 120 wWaitCnt = WAIT_500uS;
 121 while(IIC2.ICSR.BIT.TDRE == 0){
 122 if(--wWaitCnt == 0)
 123 return FALSE;
 124 }
 125 /* スレーブアドレス送信 */
 126 IIC2.ICDRT = byAddr;
 127 /* 送信終了を待つ */
 128 wWaitCnt = WAIT_500uS;
 129 while(IIC2.ICSR.BIT.TEND == 0){
 130 if(--wWaitCnt == 0)
 131 goto _RETRY;
 132 }
 133 /* ACK'0'受信をチェック */
 134 if(IIC2.ICIER.BIT.ACKBR == 0){
 135 bResult = TRUE;
 136 break;
 137 }
 138
 139 _RETRY:
 140 wWaitCnt = WAIT_500uS;
 141 while(--wWaitCnt != 0);
 142 }while(++byTry < 3);
 143
 144 return bResult;
 145 }
 146
 147 /* ストップコンディション **/
 148 /* 備考: RTS命令で10ステートかかるので、RTC-8564NBのtBUF(1.3uS)は確保される。 */
 149
 150 static BOOL iic2_stop(void)
 151 {
 152 WORD wWaitCnt;
 153 BOOL bResult;
 154
 155 /* 停止条件検出フラグクリア */
 156 IIC2.ICSR.BIT.STOP = 0;
 157 /* 停止条件発行 */
 158 IIC2.ICCR2.BYTE = 0x3D; /* BBSY=0,SCP=0:停止条件発行、SDAO=1,SDAOP=1:SDA出力制御なし
 、IICRST=0:IICリセット無効 */
 159 /* 停止条件の検出を待つ */
 160 bResult = TRUE;
 161 wWaitCnt = WAIT_500uS;

 162 while(IIC2.ICSR.BIT.STOP == 0){
 163 if(--wWaitCnt == 0){
 164 bResult = FALSE;
 165 break;
 166 }
 167 }
 168 /* 送信終了フラグをクリア */
 169 IIC2.ICSR.BIT.TEND = 0;
 170 /* スレーブ受信モードに設定 */
 171 IIC2.ICCR1.BYTE = 0x80 | RATE_USE; /* ICE=1:バスイネーブル、RCVD=0:受信継続、MST=0,TRS=0:スレー
 ブ受信モード、CKS=4:転送クロック */
 172
 173 return bResult;
 174 }
 175
 176
 177 /* データブロック送信 **/
 178
 179 static BOOL iic2_TxBlock(WORD wSize, BYTE *pbyData)
 180 {
 181 WORD wWaitCnt;
 182
 183 while(wSize > 1){
 184 /* データ送信 */
 185 IIC2.ICDRT = *(pbyData++);
 186 --wSize;
 187 /* 送信エンプティを待つ */
 188 wWaitCnt = WAIT_500uS;
 189 while(IIC2.ICSR.BIT.TDRE == 0){
 190 if(--wWaitCnt == 0)
 191 return FALSE;
 192 }
 193 }
 194 /* 最終データ送信 */
 195 IIC2.ICDRT = *(pbyData++);
 196 // --wSize;
 197 /* 送信終了を待つ */
 198 wWaitCnt = WAIT_500uS;
 199 while(IIC2.ICSR.BIT.TEND == 0){
 200 if(--wWaitCnt == 0)
 201 return FALSE;
 202 }
 203 /* ACK'0'受信をチェック */
 204 if(IIC2.ICIER.BIT.ACKBR == 1){
 205 return FALSE;
 206 }
 207
 208 return TRUE;
 209 }
 210
 211 /* データブロック受信 ***/
 212
 213 static BOOL iic2_RxBlock(WORD wSize, BYTE *pbyBuff)
 214 {
 215 WORD wWaitCnt;
 216 BYTE byDummy;
 217 BYTE byCCR;
 218
 219 /* 0バイト受信は無効 */
 220 if(wSize == 0) return FALSE;
 221
 222 /* 割り込みマスク */
 223 byCCR = get_ccr();
 224 set_imask_ccr(1);
 225 /* トランスミットエンドフラグをクリア */
 226 IIC2.ICSR.BIT.TEND = 0;
 227 /* マスター受信モード指定 */
 228 IIC2.ICCR1.BYTE = 0xA0 | RATE_USE; /* ICE=1:バスイネーブル、RCVD=0:受信継続、MST=1,TRS=0:マ
 スター受信モード、CKS=4:転送クロック */
 229 /* トランスミットデータエンプティフラグをクリア */
 230 IIC2.ICSR.BIT.TDRE = 0;
 231 /* １バイトのみの受信では最初が最後となる */
 232 if(wSize == 1){
 233 /* ACKデータに'1'を設定 */
 234 IIC2.ICIER.BIT.ACKBT = 1;
 235 /* 受信ディセーブル */
 236 IIC2.ICCR1.BIT.RCVD = 1;
 237 }
 238 else{
 239 /* ACKデータに'0'を設定 */
 240 IIC2.ICIER.BIT.ACKBT = 0;
 241 /* 受信イネーブル */
 242 IIC2.ICCR1.BIT.RCVD = 0;
 243 }

 244 /* 受信データ読み込み（最初のデータはダミー） */
 245 byDummy = IIC2.ICDRR;
 246 /* 割り込みマスク復帰 */
 247 set_ccr(byCCR);
 248
 249 /* 最初の受信データを待つ */
 250 wWaitCnt = WAIT_1mS;
 251 while(IIC2.ICSR.BIT.RDRF == 0){
 252 if(--wWaitCnt == 0)
 253 return FALSE;
 254 }
 255
 256 /* 最後以外の受信データを読み込み */
 257 while(wSize > 1){
 258 /* 最後－１番目の受信 */
 259 if(wSize == 2){
 260 /* ACKデータに'1'を設定 */
 261 IIC2.ICIER.BIT.ACKBT = 1;
 262 /* 受信ディセーブル */
 263 IIC2.ICCR1.BIT.RCVD = 1;
 264 }
 265 /* 受信データ読み込み */
 266 *(pbyBuff++) = IIC2.ICDRR;
 267 --wSize;
 268 /* データ受信を待つ */
 269 wWaitCnt = WAIT_500uS;
 270 while(IIC2.ICSR.BIT.RDRF == 0){
 271 if(--wWaitCnt == 0)
 272 return FALSE;
 273 }
 274
 275 }
 276
 277 /* 最後の受信データを読み込み */
 278 *(pbyBuff++) = IIC2.ICDRR;
 279 // --wSize;
 280
 281 return TRUE;
 282 }
 283
 284
 285 /**/
 286 /* １バイトデータリード */
 287 /**/
 288
 289 static BOOL Read1_IIC(BYTE byRegAddr, BYTE *pRxBuff)
 290 {
 291 BOOL bResult;
 292 BYTE byTry;
 293
 294 bResult = FALSE;
 295 byTry = 0;
 296 do{
 297 /* スタートコンディション */
 298 if(iic2_start(1, WRITE_MODE)){
 299 /* ターゲットアドレス送信 */
 300 if(iic2_TxBlock(1, &byRegAddr)){
 301 /* スタートコンディション再開 */
 302 if(iic2_start(0, READ_MODE)){
 303 /* データ受信 */
 304 if(iic2_RxBlock(1, pRxBuff)){
 305 bResult = TRUE;
 306 break;
 307 }
 308 }
 309 }
 310 }
 311 }while(++byTry < 3);
 312 /* ストップコンディション */
 313 iic2_stop();
 314
 315 return bResult;
 316 }
 317
 318 /**/
 319 /* 連続データリード */
 320 /**/
 321
 322 static BOOL ReadP_IIC(BYTE byRegAddr, WORD wSize, BYTE *pRxBuff)
 323 {
 324 BOOL bResult;
 325 BYTE byTry;
 326
 327 bResult = FALSE;

 328 byTry = 0;
 329 do{
 330 /* スタートコンディション */
 331 if(iic2_start(1, WRITE_MODE)){
 332 /* ターゲットアドレス送信 */
 333 if(iic2_TxBlock(1, &byRegAddr)){
 334 /* スタートコンディション再開 */
 335 if(iic2_start(0, READ_MODE)){
 336 /* データ受信 */
 337 if(iic2_RxBlock(wSize, pRxBuff)){
 338 bResult = TRUE;
 339 break;
 340 }
 341 }
 342 }
 343 }
 344 }while(++byTry < 3);
 345 /* ストップコンディション */
 346 iic2_stop();
 347
 348 return bResult;
 349 }
 350
 351 /**/
 352 /* １バイトデータライト */
 353 /**/
 354
 355 static BOOL Write1_IIC(BYTE byRegAddr, BYTE *pRxBuff)
 356 {
 357 BOOL bResult;
 358 BYTE byTry;
 359
 360 bResult = FALSE;
 361 byTry = 0;
 362 do{
 363 /* スタートコンディション */
 364 if(iic2_start(1, WRITE_MODE)){
 365 /* ターゲットアドレス送信 */
 366 if(iic2_TxBlock(1, &byRegAddr)){
 367 /* データ送信 */
 368 if(iic2_TxBlock(1, pRxBuff)){
 369 bResult = TRUE;
 370 break;
 371 }
 372 }
 373 }
 374 }while(++byTry < 3);
 375 /* ストップコンディション */
 376 iic2_stop();
 377
 378 return bResult;
 379 }
 380
 381 /**/
 382 /* 連続データライト */
 383 /**/
 384
 385 static BOOL WriteP_IIC(BYTE byRegAddr, WORD wSize, BYTE *pRxBuff)
 386 {
 387 BOOL bResult;
 388 BYTE byTry;
 389
 390 bResult = FALSE;
 391 byTry = 0;
 392 do{
 393 /* スタートコンディション */
 394 if(iic2_start(1, WRITE_MODE)){
 395 /* ターゲットアドレス送信 */
 396 if(iic2_TxBlock(1, &byRegAddr)){
 397 /* データ送信 */
 398 if(iic2_TxBlock(wSize, pRxBuff)){
 399 bResult = TRUE;
 400 break;
 401 }
 402 }
 403 }
 404 }while(++byTry < 3);
 405 /* ストップコンディション */
 406 iic2_stop();
 407
 408 return bResult;
 409 }
 410

