
 1 /**/
 2 /* タイマＷによるインターバルタイマ */
 3 /**/
 4
 5 #include <machine.h>
 6 #include "iodefine.h"
 7 #include "typedefine.h"
 8 #include "ADConvert.h"
 9 #include "Timer.h"
 10
 11 #pragma section
 12 /**/
 13 /* インターバルタイマ起動 */
 14 /* */
 15 /**/
 16 /* ※割込み禁止状態で実行してください。 */
 17 /* ※φ=20.0MHz（50.0nS） */
 18 /* ※φ/8=400nS */
 19 #define CNT_LEDON (100000/400) /* LEDの ONタイミングmin (100uS/400nS= 250) */
 20 #define CNT_LEDOFF (2000000/400) /* LEDのOFFタイミング (2mS/400nS= 5,000) */
 21 #define CNT_1MS (1000000/400) /* 1mS周期発生タイミング(1mS/400nS= 2,500) */
 22 #define CNT_10MS (10000000/400) /* 10mS周期発生タイミング(10mS/400nS=25,000) */
 23
 24 void start_timer_int(void)
 25 {
 26 /* インターバルタイマスタート（タイマＷ） */
 27 TW.TCNT = 0x0000; /* カウンタクリア */
 28 TW.TCRW.BYTE = 0x30; /* クロック＝φ／8(=400nS)を指定、カウンタクリア禁止 */
 29 TW.TMRW.BYTE = 0x48; /* GRC,GRDはアウトプットコンペアマッチレジスタとする */
 30 TW.TIERW.BYTE = 0x7F; /* TSRWのIMFA～IMFDで割り込み許可 */
 31 TW.GRA = CNT_LEDON; /* GRAコンペアマッチレジスタセット （ディスプレイリフレッシュ用
 ） */
 32 TW.GRB = CNT_LEDOFF; /* GRBコンペアマッチレジスタセット （ディスプレイリフレッシュ用
 ） */
 33 TW.GRC = CNT_1MS; /* GRCコンペアマッチレジスタセット （ 1mS周期割り込み発生用） */

 34 TW.GRD = CNT_10MS; /* GRDコンペアマッチレジスタセット （10mS周期割り込み発生用） */

 35 TW.TIOR0.BYTE = 0x88; /* FTIOA,FTIOB端子出力禁止 */
 36 TW.TIOR1.BYTE = 0x88; /* FTIOC,FTIOD端子出力禁止 */
 37 TW.TSRW.BYTE = 0x70; /* タイマステータスクリア */
 38 TW.TMRW.BYTE = 0xC8; /* タイマＷスタート */
 39
 40 /* 0.5mSタイマスタート（タイマＶ） ※ブザー発音用 */
 41 TV.TCNTV = 0x00; /* カウンタクリア */
 42 TV.TCRV0.BYTE = 0x0B; /* TCSRVのCMFA,CMFB,OVF割り込み禁止、コンペアマッチＡでカウンタ
 クリア、クロック＝φ/128（=6.4uS）を指定 */
 43 TV.TCRV1.BYTE = 0x03; /* TRGV入力禁止、TCRV0と組でクロック＝φ/128（=6.4uS）を指定
 */
 44 TV.TCSRV.BYTE = 0x10; /* タイマステータスクリア、コンペアマッチＡでTMOV端子を変化しな
 い */
 45 // TV.TCSRV.BYTE = 0x13; /* タイマステータスクリア、コンペアマッチＡでTMOV端子をトグル出
 力（PCR76の設定に無関係） */
 46 TV.TCORA = 26; /* 1/φ×128×26 = 0.166mS（約3kHzを出力） */
 47 TV.TCORB = 0; /* コンペアマッチＢレジスタ不使用 */
 48 }
 49
 50 /**/
 51 /* 明るさを0～3000にして保存する */
 52 /**/
 53 /* 引数 : wBright = 明るさ : 0（明）～1023（暗） */
 54 /* 戻値 : なし */
 55 /* : (wBrightness) = 0（明）～3000（暗） */
 56
 57 static WORD wBrightness; /* 0（明）～3000（暗） */
 58
 59 void StoreBrightness(WORD wBright)
 60 {
 61 WORD wWork;
 62
 63 if(wBright < 500){
 64 wBrightness = 0; /* 500未満は0とする */
 65 return;
 66 }
 67 wBright = wBright - 524;
 68
 69 wWork = wBright << 1;
 70 wWork = wWork + (wBright << 2); /* ６倍（0～3138）にする */
 71 if(wWork > 3000)
 72 wBrightness = 3000; /* 0～3000に制限する */
 73 else
 74 wBrightness = wWork;
 75 }
 76

 77
 78 /**/
 79 /* タイマＷコンペアマッチＡ～Ｄ割り込み */
 80 /* （汎用インターバルタイマ割込み） */
 81 /**/
 82 #pragma abs8(byCnt100mS)
 83 static BYTE byCnt100mS;
 84
 85 void startAD(void);
 86 void KeyChatCancel(void);
 87 void ScanLED_off(void);
 88 void ScanLED_on(void);
 89 void BuzzIntermit(void);
 90 void MainTimer_10mS(void);
 91 static WORD AdjBrightness(void);
 92
 93 __interrupt void Int_TMRW(void)
 94 {
 95 /* コンペアマッチＡ割り込み（LED_ON用） */
 96 if(TW.TSRW.BIT.IMFA == 1){
 97 TW.TSRW.BIT.IMFA = 0; /* コンペアマッチフラグＡクリア */
 98 TW.GRA = (WORD)(TW.GRB + CNT_LEDON + wBrightness); /* 次のLED_ONタイミングセット */
 99 /* LEDディスプレイ点灯（ダイナミック用） */
 100 ScanLED_on();
 101 }
 102 /* コンペアマッチＢ割り込み（LED_OFF用） */
 103 if(TW.TSRW.BIT.IMFB == 1){
 104 TW.TSRW.BIT.IMFB = 0; /* コンペアマッチフラグＢクリア */
 105 TW.GRB += CNT_LEDOFF; /* 次のLED_OFFタイミングをセット */
 106 /* LEDディスプレイ消灯（ダイナミック用） */
 107 ScanLED_off();
 108 }
 109 /* コンペアマッチＣ割り込み（ 1mS周期） */
 110 if(TW.TSRW.BIT.IMFC == 1){
 111 TW.TSRW.BIT.IMFC = 0; /* コンペアマッチフラグＣクリア */
 112 TW.GRC += CNT_1MS; /* 次の1mSをセット */
 113 /* ここに1mS周期の関数呼び出しを記述する */
 114
 115 }
 116 /* コンペアマッチＤ割り込み（10mS周期） */
 117 if(TW.TSRW.BIT.IMFD == 1){
 118 TW.TSRW.BIT.IMFD = 0; /* コンペアマッチフラグＤクリア */
 119 TW.GRD += CNT_10MS; /* 次の10mSをセット */
 120 /* ここに10mS周期の関数呼び出しを記述する */
 121 KeyChatCancel();
 122 MainTimer_10mS();
 123
 124 if(++byCnt100mS >= 10){
 125 byCnt100mS = 0;
 126 /* ここに100mS周期の関数呼び出しを記述する */
 127 StartAD();
 128 BuzzIntermit();
 129 }
 130 }
 131 }
 132
 133 /**/
 134 /* 100mS周期割り込みで呼び、ブザー音の断続を行う */
 135 /**/
 136
 137 #pragma abs8(BuzzValid,BuzzValid2,BuzzPattern,BuzzCount)
 138 static BYTE BuzzValid,BuzzValid2;
 139 static BYTE BuzzPattern;
 140 static BYTE BuzzCount;
 141 static const BYTE BitPos[8] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80};
 142
 143 static void BuzzIntermit(void)
 144 {
 145 if(BuzzValid == 0){
 146 /* 発音停止（コンペアマッチＡでTMOV端子を変化しない） */
 147 if(BuzzValid2 != 0){ /* 発音中か？ */
 148 BuzzValid2 = 0;
 149 TV.TCSRV.BYTE = 0x10;
 150 }
 151 }
 152 else{
 153 /* 発音中を示す */
 154 BuzzValid2 = 1;
 155 /* 発音開始（コンペアマッチＡでTMOV端子をトグル出力） */
 156 if((BuzzPattern & BitPos[BuzzCount]) != 0){
 157 TV.TCSRV.BYTE = 0x13;
 158
 159 }
 160 /* 発音停止（コンペアマッチＡでTMOV端子を変化しない） */

 161 else{
 162 TV.TCSRV.BYTE = 0x10;
 163 }
 164 /* ビット位置カウンタ更新 */
 165 BuzzCount++;
 166 if(BuzzCount >= 8) BuzzCount = 0;
 167 }
 168 }
 169
 170 /**/
 171 /* ブザー制御 */
 172 /**/
 173 /* 引数 : なし */
 174 /* 戻値 : BuzzON() = なし */
 175 /* : BuzzOFF() = なし */
 176
 177 void BuzzON(void)
 178 {
 179 BYTE byCCR;
 180
 181 /* 割り込みマスク */
 182 byCCR = get_ccr();
 183 set_imask_ccr(1);
 184 /* ピピピピ…という音発生 */
 185 BuzzPattern = 0x55;
 186 BuzzCount = 0;
 187 BuzzValid = 1;
 188 /* 割り込みマスク復帰 */
 189 set_ccr(byCCR);
 190 }
 191
 192 void BuzzOFF(void)
 193 {
 194 BuzzValid = 0;
 195 }
 196
 197 /* End of File */

