
 1 /**/
 2 /**/
 3 /*** ***/
 4 /*** TWI(I2C)通信制御 ***/
 5 /*** by : S.Suzuki ***/
 6 /**/
 7 /**/
 8 /* 注意 : システムクロック（ここではPCLK）は、ヒューズビットによって 8MHzと */
 9 /* : してあること。レジスタCLKPRは初期値のまま変更していない。 */
 10
 11 #include <avr/io.h>
 12 #include <avr/interrupt.h>
 13
 14 #include "hdwareInfo.h" // ←BYTE,WORD等独自の型宣言あり
 15 #include "TWI_I2C.h"
 16
 17 /**/
 18 /* 参考 : TWBR = (PCLK / SCL / TWPS - 16) / 2 */
 19 /* : PCLK = CPUクロック（20MHz以下） */
 20 /* : SCL = I2Cのクロック（400KHz以下） */
 21 /* : TWPS = 前置分周器による分周比（1,4,16,64のどれか） */
 22 /* : TWSR.TWPS[1-0] = 00:分周比=1 */
 23 /* : = 01:分周比=4 */
 24 /* : = 10:分周比=16 */
 25 /* : = 11:分周比=64 */
 26 /* : 上記により */
 27 /* : 100Kbpsのとき TWBR = 32 */
 28 /* : 400Kbpsのとき TWBR = 2 */
 29 /* : ただし TWSR.TWPS[1-0]=00, PCLK=8MHzであること。 */
 30
 31 #define SCL_HZ 100 /* '100'で100kbps、'400'で400kbps、その他は指定不可 */
 32
 33 /* TWSRが返すステータスフラグ */
 34 #define STR_ACK (0x08) /* スタートコンディション正常 */
 35 #define RST_ACK (0x10) /* 再スタートコンディション正常 */
 36 #define IDW_ACK (0x18) /* スレーブアドレス＋書き込み指定正常 */
 37 #define IDW_NAK (0x20) /* スレーブアドレス＋書き込み指定異常 */
 38 #define IDR_ACK (0x40) /* スレーブアドレス＋読み込み指定正常 */
 39 #define IDR_NAK (0x48) /* スレーブアドレス＋読み込み指定異常 */
 40 #define DWR_ACK (0x28) /* データ書き込み正常 */
 41 #define DWR_NAK (0x30) /* データ書き込み異常 */
 42 #define DRD_ACK (0x50) /* データ読み込み正常 */
 43 #define DRD_NAK (0x58) /* データ読み込み異常または最後の読み込み */
 44 #define BUS_ERR (0x38) /* バス競合調停失敗 */
 45 /* 処理プロセスを示すコード（st_byProcessの値） */
 46 #define PROC_WAITNG (0) /* 待機中 */
 47 #define PROC_START (1) /* スタートコンディション発行 */
 48 #define PROC_START2 (2) /* 再スタートコンディション発行 */
 49 #define PROC_SLVIDW (3) /* スレーブアドレス＋Ｗを書き込み */
 50 #define PROC_SLVIDR (4) /* スレーブアドレス＋Ｒを書き込み */
 51 #define PROC_DATA1W (5) /* データ１を書き込み */
 52 #define PROC_DATA2W (6) /* データ２を書き込み */
 53 #define PROC_DATAR (7) /* データを読み込み */
 54 #define PROC_ERROR (8) /* エラー終了 */
 55 //#define PROC_END (9) /* 終了 */
 56
 57 /**/
 58
 59 /**/
 60 /* 注意 : (1)「１ブロック目の送信データ」とは、RTCのレジスタ番号やEEPROMのア */
 61 /* : ドレスなど、あらかじめ読み込み／書き込みするデータの場所を指定す */
 62 /* : るもの。 */
 63 /* : (2)「２ブロック目の送信データ」とは、１ブロック目データで指定した */
 64 /* : 場所のデータ本体を示す。 */
 65
 66 static const BYTE* st_pSndDataPtr1; /* １ブロック目の送信データがあるアドレス */
 67 static const BYTE* st_pSndDataPtr2; /* ２ブロック目の送信データがあるアドレス */
 68 static BYTE* st_pRcvBuffPtr; /* 受信データを格納するアドレス */
 69 static BYTE st_bySndSize1; /* １ブロック目の送信データのバイト数 */
 70 static BYTE st_bySndSize2; /* ２ブロック目の送信データのバイト数 */
 71 static BYTE st_byRcvSize; /* 受信データのバイト数 */
 72 static BYTE st_bySndCount; /* 送信バイト数カウンタ */
 73 static BYTE st_byRcvCount; /* 受信バイト数カウンタ */
 74 static BYTE st_bySlaveID; /* スレーブのアドレス */
 75
 76 static BYTE st_bySlaveID; /* 相手（スレーブ）のアドレス */
 77 static volatile BYTE st_byProcess; /* 処理プロセス番号 */
 78

 79 /**/
 80 /* 定周期割り込み処理 */
 81 /**/
 82 /* ※1mS周期割り込みで呼ぶこと。 ←正しく呼ばないと正常に動かないので注意！ */
 83
 84 static volatile WORD wTmrEndWait;
 85
 86 void Timer01mS_I2C(void)
 87 {
 88 if(wTmrEndWait != 0){
 89 --wTmrEndWait;
 90 }
 91 }
 92
 93 /**/
 94 /* TWI(I2C)インターフェース初期化 */
 95 /**/
 96 /* 注意 : 割り込みマスク状態で、起動後に一度呼ぶこと。 */
 97 /* 参考 : TWCR.TWEN=1でPC5,PC4端子はSCL,SDAになる。 */
 98
 99 void Init_I2C(void)
 100 {
 101 /* I/Oポートの初期化（TWCR.TWEN=0としたときPC5,PC4が入力ポートになるよう明示的に設定） */
 102 DDRC &= ~(_BV(DDC5) | _BV(DDC4)); /* PC5,PC4を入力ポートにする */
 103 PORTC &= ~(_BV(PORTC5) | _BV(PORTC4)); /* PC5,PC4のプルアップOFF */
 104
 105 /* TWI(I2C)の転送速度(SCL)を設定 */
 106 #if (SCL_HZ == 100)
 107 TWBR = 32;
 108 #elif (SCL_HZ == 400)
 109 TWBR = 2;
 110 #else
 111 #error 106:define Error 'SCL_HZ'
 112 #endif
 113
 114 /* 転送速度を決めるプリスケラを設定 */
 115 TWSR = 0x00; /* TWPS[1-0]='00'でプリスケラはPCLK/1 */
 116 /* TWI(I2C)の動作開始 */
 117 TWCR = _BV(TWEN);
 118
 119 /* 作業用変数類を初期化 */
 120 st_bySlaveID = 0x00;
 121 st_byProcess = PROC_WAITNG;
 122 // st_byTmr01mS = 0;
 123 }
 124
 125 /**/
 126 /* TWI(I2C)インターフェース割り込み処理 */
 127 /**/
 128
 129 static inline void Stop_I2C(void);
 130 static inline void StopCond_I2C(void);
 131
 132 /* スタートコンディション送信完了割り込み(STR_ACK:0x08) **********************/
 133
 134 static void StartSeq_ACK(void)
 135 {
 136 /* 書き込みモードの時 */
 137 if((st_bySndSize1 != 0) || (st_bySndSize2 != 0)){
 138 /* スレーブアドレス＋Ｗ書き込み済みを示す */
 139 st_byProcess = PROC_SLVIDW;
 140 /* スレーブアドレス＋Ｗビット送信 */
 141 TWDR = (BYTE)(st_bySlaveID & 0xFE);
 142 /* TWCRのTWINTを解除 */
 143 TWCR = _BV(TWINT) | _BV(TWEN) | _BV(TWIE); /* 割り込み許可 */
 144 }
 145 /* 読み込みモードの時 */
 146 else if(st_byRcvSize != 0){
 147 /* スレーブアドレス＋Ｒ書き込み済みを示す */
 148 st_byProcess = PROC_SLVIDR;
 149 /* スレーブアドレス＋Ｒビット送信 */
 150 TWDR = (BYTE)(st_bySlaveID | 0x01);
 151 /* TWCRのTWINTを解除 */
 152 TWCR = _BV(TWINT) | _BV(TWEN) | _BV(TWIE); /* 割り込み許可 */
 153 }
 154 else{
 155 /* ストップコンディション発行 */
 156 Stop_I2C();

 157 }
 158 }
 159
 160 /* スタートコンディション再送信完了割り込み(RST_ACK:0x10) ********************/
 161 /* 注意 : スタートコンディション再送信後は読み込みのみとする。 */
 162
 163 static void Start2Seq_ACK(void)
 164 {
 165 /* スレーブアドレス＋Ｒ書き込み済みを示す */
 166 st_byProcess = PROC_SLVIDR;
 167 /* スレーブアドレス＋Ｒビット送信 */
 168 TWDR = (BYTE)(st_bySlaveID | 0x01);
 169 /* TWCRのTWINTを解除 */
 170 TWCR = _BV(TWINT) | _BV(TWEN) | _BV(TWIE); /* 割り込み許可 */
 171 }
 172
 173 /* スレーブアドレス＋Ｗ送信の応答受信割り込み(IDW_ACK:0x18,DWR_ACK:0x28) ******/
 174 /* 注意 : 書き込みと読み込みが連続する場合、最初に書き込みとする。 */
 175
 176 static void SendID_Data_ACK(void)
 177 {
 178 /* １ブロック目の送信データがある場合 */
 179 if(st_bySndSize1 != 0){
 180 st_bySndSize1--;
 181 /* データ１書き込み済みを示す */
 182 st_byProcess = PROC_DATA1W;
 183 /* データを送信 */
 184 TWDR = *(st_pSndDataPtr1++);
 185 /* TWCRのTWINTを解除 */
 186 TWCR = _BV(TWINT) | _BV(TWEN) | _BV(TWIE); /* 割り込み許可 */
 187 }
 188 /* ２ブロック目の送信データがある場合 */
 189 else if(st_bySndSize2 != 0){
 190 st_bySndSize2--;
 191 /* データ２書き込み済みを示す */
 192 st_byProcess = PROC_DATA2W;
 193 /* データを送信 */
 194 TWDR = *(st_pSndDataPtr2++);
 195 /* TWCRのTWINTを解除 */
 196 TWCR = _BV(TWINT) | _BV(TWEN) | _BV(TWIE); /* 割り込み許可 */
 197 }
 198 /* 引き続き受信データを要求する場合 */
 199 else if(st_byRcvSize != 0){
 200 /* 処理プロセス番号をセット */
 201 st_byProcess = PROC_START2;
 202 /* スタートコンディション再発行 */
 203 TWCR = _BV(TWINT) | _BV(TWSTA) | _BV(TWEN) | _BV(TWIE); /* 割り込み許可 */
 204 }
 205 /* 送信データも受信データもない場合 */
 206 else{
 207 /* ストップコンディション発行 */
 208 Stop_I2C();
 209 }
 210 }
 211
 212 /* スレーブアドレス＋Ｒ送信の応答受信割り込み(IDR_ACK:0x40) *******************/
 213
 214 static void SendID_R_ACK(void)
 215 {
 216 /* 処理プロセス番号をセット */
 217 st_byProcess = PROC_DATAR;
 218 /* 受信バイト数が１バイトの場合 */
 219 if(st_byRcvSize == 1){
 220 /* NAK発行 */
 221 TWCR = _BV(TWINT) | _BV(TWEN) | _BV(TWIE); /* 割り込み許可 */
 222 }
 223 /* 受信バイト数が複数バイトの場合 */
 224 else{
 225 /* ACK発行 */
 226 TWCR = _BV(TWINT) | _BV(TWEA) | _BV(TWEN) | _BV(TWIE); /* 割り込み許可 */
 227 }
 228 }
 229
 230 /* 読み込みデータ受信の応答受信割り込み(DRD_ACK:0x50) *************************/
 231
 232 static void ReadData_ACK(void)
 233 {
 234 /* 処理プロセス番号をセット */

 235 // st_byProcess = PROC_DATAR;
 236 /* データを受信 */
 237 *(st_pRcvBuffPtr++) = TWDR;
 238 st_byRcvSize--;
 239 /* 受信バイト数が１バイトの場合 */
 240 if(st_byRcvSize == 1){
 241 /* NAK発行 */
 242 TWCR = _BV(TWINT) | _BV(TWEN) | _BV(TWIE); /* 割り込み許可 */
 243 }
 244 /* 受信バイト数が０バイトの場合（念のため） */
 245 else if(st_byRcvSize == 0){
 246 /* ストップコンディション発行 */
 247 Stop_I2C();
 248 }
 249 else{
 250 /* ACK発行 */
 251 TWCR = _BV(TWINT) | _BV(TWEA) | _BV(TWEN) | _BV(TWIE); /* 割り込み許可 */
 252 }
 253 }
 254
 255 /* 最後の読み込みデータ受信の応答受信割り込み(DRD_NAK:0x58) *************************/
 256
 257 static void ReadData_NAK(void)
 258 {
 259 /* データを受信 */
 260 *st_pRcvBuffPtr = TWDR;
 261 /* ストップコンディション発行 */
 262 Stop_I2C();
 263 }
 264
 265 /* TWI(I2C)割り込み処理 ***/
 266
 267 ISR(TWI_vect)
 268 {
 269 BYTE byTWIstat;
 270
 271 byTWIstat = (BYTE)(TWSR & 0xF8);
 272 switch(byTWIstat){
 273 /* スタートコンディション発行後の正常応答 */
 274 case STR_ACK: // 0x08
 275 StartSeq_ACK();
 276 break;
 277 /* 再スタートコンディション発行後の正常応答 */
 278 case RST_ACK: // 0x10
 279 Start2Seq_ACK();
 280 break;
 281 /* デバイスID＋書き込み指定後の正常応答 */
 282 case IDW_ACK: // 0x18
 283 SendID_Data_ACK();
 284 break;
 285 /* デバイスID＋読み込み指定後の正常応答 */
 286 case IDR_ACK: // 0x40
 287 SendID_R_ACK();
 288 break;
 289 /* １byteデータ書き込み後の正常応答 */
 290 case DWR_ACK: // 0x28
 291 SendID_Data_ACK();
 292 break;
 293 /* １byteデータ読み込み後の正常応答 */
 294 case DRD_ACK: // 0x50
 295 ReadData_ACK();
 296 break;
 297 /* 最後のデータ読み込み後の応答 */
 298 case DRD_NAK: // 0x58
 299 ReadData_NAK();
 300 break;
 301 /* デバイスID＋書き込み指定後の異常応答 */
 302 // case IDW_NAK: // 0x20
 303 // break;
 304 /* デバイスID＋読み込み指定後の異常応答 */
 305 // case IDR_NAK: // 0x48
 306 // break;
 307 /* データ書き込み後の異常応答 */
 308 // case DWR_NAK: // 0x30
 309 // break;
 310 /* バス競合調停失敗 */
 311 // case BUS_ERR: // 0x38
 312 // break;

 313 /* 未定義のステータス、未定義の異常発生 */
 314 default:
 315 /* ストップコンディション発行 */
 316 StopCond_I2C();
 317 s_byProcess = PROC_ERROR;
 318 break;
 319 }
 320 }
 321
 322 /**/
 323 /* RIIC通信スタート */
 324 /**/
 325
 326 static void Start_I2C(void)
 327 {
 328 /* 送信・受信カウンタをクリア */
 329 st_bySndCount = 0;
 330 st_byRcvCount = 0;
 331 /* 処理プロセス番号をセット */
 332 st_byProcess = PROC_START;
 333 /* スタートコンディション発行 */
 334 TWCR = _BV(TWINT) | _BV(TWSTA) | _BV(TWEN) | _BV(TWIE); /* 割り込み許可 */
 335 }
 336
 337
 338 /* ストップコンディション発行 ***/
 339 /* 備考 : (1)異常状態からの復帰にも使用できる。 */
 340 /* : (2)SCL,SDA端子はハイ・インピーダンス状態になる */
 341
 342 static inline void Stop_I2C(void)
 343 {
 344 /* 処理プロセス番号を初期化する */
 345 st_byProcess = PROC_WAITNG;
 346 /* ストップコンディション発行 */
 347 TWCR = _BV(TWINT) | _BV(TWSTO) | _BV(TWEN); /* 割り込み禁止 */
 348 }
 349
 350 static inline void StopCond_I2C(void)
 351 {
 352 /* ストップコンディション発行 */
 353 TWCR = _BV(TWINT) | _BV(TWSTO) | _BV(TWEN); /* 割り込み禁止 */
 354 }
 355
 356 /**/
 357 /* スレーブアドレスの設定 */
 358 /**/
 359 /* 引数 : bySlaveAddr = 相手のスレーブアドレス */
 360 /* 戻値 : なし */
 361
 362 void SetSlaveAddr_I2C(BYTE bySlaveAddr)
 363 {
 364 /* （相手）スレーブアドレス保存 */
 365 st_bySlaveID = bySlaveAddr;
 366 }
 367
 368
 369 /**/
 370 /* 送信してレスポンスを受信する */
 371 /**/
 372 /* 注意 : スレーブアドレスはあらかじめ設定しておき、１バイト目に送信される。 */
 373 /* 解説 : 読み／書きモードとリスタートコンディションの有無 */
 374 /* bySndDataSz* | byRcvDataSz | */
 375 /* -------------|-------------|----------------|----------------------------- */
 376 /* == 0 | == 0 | 書き込みのみ | リスタートコンディションなし */
 377 /* == 0 | != 0 | 読み込みのみ | リスタートコンディションなし */
 378 /* != 0 | == 0 | 書き込みのみ | リスタートコンディションなし */
 379 /* != 0 | != 0 | 書き→読み込み | リスタートコンディションあり */
 380 /* 引数 : TxRxParam = 送信／受信パラメータのアドレス */
 381 /* 戻値 : TranceiveData_I2C() == FALSE : エラーあり（タイムアウトは100mS） */
 382 /* : == TRUE : 正常 */
 383
 384 BOOL TranceiveData_I2C(I2C_TXRX* TxRxParam)
 385 {
 386 /* 送信パラメータセット */
 387 st_pSndDataPtr1 = TxRxParam->pSndData1;
 388 st_bySndSize1 = TxRxParam->bySndDataSz1;
 389 st_pSndDataPtr2 = TxRxParam->pSndData2;
 390 st_bySndSize2 = TxRxParam->bySndDataSz2;

 391 /* 受信パラメータセット */
 392 st_pRcvBuffPtr = TxRxParam->pRcvBuff;
 393 st_byRcvSize = TxRxParam->byRcvDataSz;
 394
 395
 396 /* TWI(I2C)通信スタート */
 397 Start_I2C();
 398 /* 通信終了を100mSまで待つ */
 399 wTmrEndWait = 100;
 400 while(st_byProcess != PROC_WAITNG){
 401 if(s_byProcess == PROC_ERROR){
 402 s_byProcess = PROC_WAITNG;
 403 return FALSE;
 404 }
 405 if(wTmrEndWait == 0){
 406 /* TWI(I2C)通信ストップ */
 407 Stop_I2C();
 408 return FALSE;
 409 }
 410 }
 411
 412 return TRUE;
 413 }
 414
 415 /**/
 416 /**/
 417 /*** ***/
 418 /*** TWI(I2C)通信支援関数 ***/
 419 /*** ***/
 420 /**/
 421 /**/
 422 #define TRYMAX_I2C (5) /* リトライを含む最大送信回数 */
 423
 424 /**/
 425 /* １バイトデータリード */
 426 /**/
 427 /* １バイトのアドレス指定（RTC用） **/
 428 /* 引数 : byRdAddr = アドレス番号 */
 429 /* : pRxBuff = 読み出しデータを格納するバッファのアドレス */
 430 /* 戻値 : ReadByte_A8_I2C() == FALSE : 処理中（ビジー） */
 431 /* : == TRUE : 正常受付 */
 432
 433 BOOL ReadByte_A8_I2C(BYTE byRdAddr, BYTE *pRxBuff)
 434 {
 435 I2C_TXRX RIICParam;
 436 int nTryCntr;
 437
 438 /* 送受信パラメータセット */
 439 RIICParam.bySndDataSz1 = 1;
 440 RIICParam.pSndData1 = (const BYTE*)&byRdAddr;
 441 RIICParam.bySndDataSz2 = 0;
 442 RIICParam.pSndData2 = NULL;
 443 RIICParam.byRcvDataSz = 1;
 444 RIICParam.pRcvBuff = pRxBuff;
 445
 446 nTryCntr = 0;
 447 do{
 448 if(TranceiveData_I2C(&RIICParam) != FALSE){
 449 return TRUE;
 450 }
 451 }while(++nTryCntr < TRYMAX_I2C);
 452
 453 return FALSE;
 454 }
 455
 456 /* ２バイトのアドレス指定（EEPROM用） ***/
 457 /* 引数 : wRdAddr = レジスタアドレス番号 */
 458 /* : pRxBuff = 読み出しデータを格納するバッファのアドレス */
 459 /* 戻値 : ReadByte_A16_I2C() == FALSE : 処理中（ビジー） */
 460 /* : == TRUE : 正常受付 */
 461
 462 BOOL ReadByte_A16_I2C(WORD wRdAddr, BYTE *pRxBuff)
 463 {
 464 I2C_TXRX RIICParam;
 465 int nTryCntr;
 466 BYTE abyTxBuff[2];
 467
 468 /* 16bitアドレスを8bitずつにする */

 469 abyTxBuff[0] = (BYTE)(wRdAddr >> 8);
 470 abyTxBuff[1] = (BYTE)wRdAddr;
 471
 472 /* 送受信パラメータセット */
 473 RIICParam.bySndDataSz1 = 2;
 474 RIICParam.pSndData1 = (const BYTE*)abyTxBuff;
 475 RIICParam.bySndDataSz2 = 0;
 476 RIICParam.pSndData2 = NULL;
 477 RIICParam.byRcvDataSz = 1;
 478 RIICParam.pRcvBuff = pRxBuff;
 479
 480 /* 読み込みシーケンス */
 481 nTryCntr = 0;
 482 do{
 483 if(TranceiveData_I2C(&RIICParam) != FALSE){
 484 return TRUE;
 485 }
 486 }while(++nTryCntr < TRYMAX_I2C);
 487
 488 return FALSE;
 489 }
 490
 491 /**/
 492 /* ページデータリード */
 493 /**/
 494 /* １バイトのアドレス指定（RTC用） **/
 495 /* 引数 : byRdAddr = レジスタアドレス番号 */
 496 /* : bySize = 読み込むデータのバイト数 */
 497 /* : pRxBuff = 読み出しデータを格納するバッファのアドレス */
 498 /* 戻値 : ReadPage_A8_I2C() == FALSE : 処理中（ビジー） */
 499 /* : == TRUE : 正常受付 */
 500
 501 BOOL ReadPage_A8_I2C(BYTE byRdAddr, BYTE bySize, BYTE *pRxBuff)
 502 {
 503 I2C_TXRX RIICParam;
 504 int nTryCntr;
 505
 506 /* 送受信パラメータセット */
 507 RIICParam.bySndDataSz1 = 1;
 508 RIICParam.pSndData1 = (const BYTE*)&byRdAddr;
 509 RIICParam.bySndDataSz2 = 0;
 510 RIICParam.pSndData2 = NULL;
 511 RIICParam.byRcvDataSz = bySize;
 512 RIICParam.pRcvBuff = pRxBuff;
 513
 514 nTryCntr = 0;
 515 do{
 516 if(TranceiveData_I2C(&RIICParam) != FALSE){
 517 return TRUE;
 518 }
 519 }while(++nTryCntr < TRYMAX_I2C);
 520
 521 return FALSE;
 522 }
 523
 524 /* ２バイトのアドレス指定（EEPROM用） ***/
 525 /* 引数 : wRdAddr = レジスタアドレス番号 */
 526 /* : bySize = 読み込むデータのバイト数 */
 527 /* : pRxBuff = 読み出しデータを格納するバッファのアドレス */
 528 /* 戻値 : ReadPage_A16_I2C() == FALSE : 処理中（ビジー） */
 529 /* : == TRUE : 正常受付 */
 530
 531 BOOL ReadPage_A16_I2C(WORD wRdAddr, BYTE bySize, BYTE *pRxBuff)
 532 {
 533 I2C_TXRX RIICParam;
 534 int nTryCntr;
 535 BYTE abyTxBuff[2];
 536
 537 /* 16bitアドレスを8bitずつにする */
 538 abyTxBuff[0] = (BYTE)(wRdAddr >> 8);
 539 abyTxBuff[1] = (BYTE)wRdAddr;
 540
 541 /* 送受信パラメータセット */
 542 RIICParam.bySndDataSz1 = 2;
 543 RIICParam.pSndData1 = (const BYTE*)abyTxBuff;
 544 RIICParam.bySndDataSz2 = 0;
 545 RIICParam.pSndData2 = NULL;
 546 RIICParam.byRcvDataSz = bySize;

 547 RIICParam.pRcvBuff = pRxBuff;
 548
 549 /* 読み込みシーケンス */
 550 nTryCntr = 0;
 551 do{
 552 if(TranceiveData_I2C(&RIICParam) != FALSE){
 553 return TRUE;
 554 }
 555 }while(++nTryCntr < TRYMAX_I2C);
 556
 557 return FALSE;
 558 }
 559
 560 /**/
 561 /* １バイトデータライト */
 562 /**/
 563 /* １バイトのアドレス指定（RTC用） **/
 564 /* 引数 : byWrAddr = レジスタアドレス番号 */
 565 /* : pTxData = 書き込むデータのアドレス */
 566 /* 戻値 : WriteByte_A8_I2C() == FALSE : 処理中（ビジー） */
 567 /* : == TRUE : 正常受付 */
 568
 569 BOOL WriteByte_A8_I2C(BYTE byWrAddr, const BYTE *pTxData)
 570 {
 571 I2C_TXRX RIICParam;
 572 int nTryCntr;
 573
 574 /* 送受信パラメータセット */
 575 RIICParam.bySndDataSz1 = 1;
 576 RIICParam.pSndData1 = (const BYTE*)&byWrAddr;
 577 RIICParam.bySndDataSz2 = 1;
 578 RIICParam.pSndData2 = pTxData;
 579 RIICParam.byRcvDataSz = 0;
 580 RIICParam.pRcvBuff = NULL;
 581
 582 nTryCntr = 0;
 583 do{
 584 if(TranceiveData_I2C(&RIICParam) != FALSE){
 585 return TRUE;
 586 }
 587 }while(++nTryCntr < TRYMAX_I2C);
 588
 589 return FALSE;
 590 }
 591
 592 /* ２バイトのアドレス指定（EEPROM用） ***/
 593 /* 引数 : wWrAddr = レジスタアドレス番号 */
 594 /* : pTxData = 書き込むデータのアドレス */
 595 /* 戻値 : WriteByte_A16_I2C() == FALSE : 処理中（ビジー） */
 596 /* : == TRUE : 正常受付 */
 597
 598 BOOL WriteByte_A16_I2C(WORD wWrAddr, const BYTE *pTxData)
 599 {
 600 I2C_TXRX RIICParam;
 601 int nTryCntr;
 602 BYTE abyTxBuff[2];
 603
 604 /* 16bitアドレスを8bitずつにする */
 605 abyTxBuff[0] = (BYTE)(wWrAddr >> 8);
 606 abyTxBuff[1] = (BYTE)wWrAddr;
 607
 608 /* 送受信パラメータセット */
 609 RIICParam.bySndDataSz1 = 2;
 610 RIICParam.pSndData1 = (const BYTE*)abyTxBuff;
 611 RIICParam.bySndDataSz2 = 1;
 612 RIICParam.pSndData2 = pTxData;
 613 RIICParam.byRcvDataSz = 0;
 614 RIICParam.pRcvBuff = NULL;
 615
 616 /* 書き込みシーケンス開始 */
 617 nTryCntr = 0;
 618 do{
 619 if(TranceiveData_I2C(&RIICParam) != FALSE){
 620 return TRUE;
 621 }
 622 }while(++nTryCntr < TRYMAX_I2C);
 623
 624 return FALSE;

 625 }
 626
 627
 628 /**/
 629 /* ページデータライト */
 630 /**/
 631 /* １バイトのアドレス指定（RTC用） **/
 632 /* 引数 : byWrAddr = レジスタアドレス番号 */
 633 /* : bySize = 書き込むデータのバイト数 */
 634 /* : pTxData = 書き込むデータのアドレス */
 635 /* 戻値 : WritePage_A8_I2C() == FALSE : 処理中（ビジー） */
 636 /* : == TRUE : 正常受付 */
 637
 638 BOOL WritePage_A8_I2C(BYTE byWrAddr, BYTE bySize, const BYTE *pTxData)
 639 {
 640 I2C_TXRX RIICParam;
 641 int nTryCntr;
 642
 643 /* 送受信パラメータセット */
 644 RIICParam.bySndDataSz1 = 1;
 645 RIICParam.pSndData1 = (const BYTE*)&byWrAddr;
 646 RIICParam.bySndDataSz2 = bySize;
 647 RIICParam.pSndData2 = pTxData;
 648 RIICParam.byRcvDataSz = 0;
 649 RIICParam.pRcvBuff = NULL;
 650
 651 nTryCntr = 0;
 652 do{
 653 if(TranceiveData_I2C(&RIICParam) != FALSE){
 654 return TRUE;
 655 }
 656 }while(++nTryCntr < TRYMAX_I2C);
 657
 658 return FALSE;
 659 }
 660
 661 /* ２バイトのアドレス指定（EEPROM用） ***/
 662 /* 引数 : wWrAddr = レジスタアドレス番号 */
 663 /* : bySize = 書き込むデータのバイト数 */
 664 /* : pTxData = 書き込むデータのアドレス */
 665 /* 戻値 : WritePage_A16_I2C() == FALSE : 処理中（ビジー） */
 666 /* : == TRUE : 正常受付 */
 667
 668 BOOL WritePage_A16_I2C(WORD wWrAddr, BYTE bySize, const BYTE *pTxData)
 669 {
 670 I2C_TXRX RIICParam;
 671 int nTryCntr;
 672 BYTE abyTxBuff[2];
 673
 674 /* 16bitアドレスを8bitずつにする */
 675 abyTxBuff[0] = (BYTE)(wWrAddr >> 8);
 676 abyTxBuff[1] = (BYTE)wWrAddr;
 677 /* 送受信パラメータセット */
 678 RIICParam.bySndDataSz1 = 2;
 679 RIICParam.pSndData1 = (const BYTE*)abyTxBuff;
 680 RIICParam.bySndDataSz2 = bySize;
 681 RIICParam.pSndData2 = pTxData;
 682 RIICParam.byRcvDataSz = 0;
 683 RIICParam.pRcvBuff = NULL;
 684
 685 /* 書き込みシーケンス開始 */
 686 nTryCntr = 0;
 687 do{
 688 if(TranceiveData_I2C(&RIICParam) != FALSE){
 689 return TRUE;
 690 }
 691 }while(++nTryCntr < TRYMAX_I2C);
 692
 693 return FALSE;
 694 }
 695
 696

