
/**/
/* キー入力チャタリングキャンセル・サンプル */
/**/

#include <machine.h>
#include <stdlib.h>
#include "typedefine.h"
#include "iodefine.h"

/* **/
typedef union {
 BYTE ALL;
 struct {
 BYTE B3L:1; /* B7:スイッチ４長押し */
 BYTE B2L:1; /* B6:スイッチ３長押し */
 BYTE B5:1; /* B5:スイッチ６ */
 BYTE B4:1; /* B4:スイッチ５ */
 BYTE B3:1; /* B3:スイッチ４ */
 BYTE B2:1; /* B2:スイッチ３ */
 BYTE B1:1; /* B1:スイッチ２ */
 BYTE B0:1; /* B0:スイッチ１ */
 } BIT;
} KEYDAT_T;
#define KEY_SW3L (0x80) /* B7:スイッチ４長押し */
#define KEY_SW2L (0x40) /* B6:スイッチ３長押し */
#define KEY_SW5 (0x20) /* B5:スイッチ６ */
#define KEY_SW4 (0x10) /* B4:スイッチ５ */
#define KEY_SW3 (0x08) /* B3:スイッチ４（長押しできる） */
#define KEY_SW2 (0x04) /* B2:スイッチ３（長押しできる） */
#define KEY_SW1 (0x02) /* B1:スイッチ２（オートリピートする） */
#define KEY_SW0 (0x01) /* B0:スイッチ１（オートリピートする） */
/**/

#define VALIDBITS (6) /* キー入力に使っているビット数（b0から） */
#define CHAT_TIME (5) /* 50mS（10mS単位） */
#define RPT_STTIM (CHAT_TIME+95) /* 1000mS（ 〃 ） */
#define RPT_INTTM (10) /* 100mS（ 〃 ） */

#pragma abs8(KeyState,KeyPush,KeyInpBak)
static KEYDAT_T KeyState; /* 現在のキーON/OFF状態 */
static KEYDAT_T KeyPush; /* 現在のキーON状態 */
static BYTE KeyInpBak; /* キーON/OFF状態検知用メモ */

#pragma section
static WORD awKeyChat[VALIDBITS]; /* チャタリングキャンセルタイマ */

/* キー入力チャタリングキャンセル ***/
/* ※10mS周期割り込みで呼ぶ。 */
/* ※キーを押すと、IO.PDRB.BIT.B5～B0の対応ビッが“L”になるものとする。 */

void KeyChatCancel(void)
{
 int nChatCnt,nLpcnt;
 BYTE byKeyDat,byKeyChg,byBitPtn;

 /* キー入力取り込み */
 byKeyDat = (BYTE)(~IO.PDRB.BYTE & 0x3F);
 /* 前回との変化ビット取り出し */
 byKeyChg = (BYTE)(byKeyDat ^ KeyInpBak);
 /* 今回の状態を保存 */
 KeyInpBak = byKeyDat;

 /* キー入力チャタリングキャンセル */
 byBitPtn = 0x01;
 nLpcnt = 0;
 do{
 if((byKeyChg & byBitPtn) != 0){
 awKeyChat[nLpcnt] = 0;
 }
 else{
 nChatCnt = awKeyChat[nLpcnt];
 nChatCnt++;
 if(nChatCnt <= RPT_STTIM){
 /* チャタリングキャンセル処理 */
 if(nChatCnt == CHAT_TIME){
 if((byKeyDat & byBitPtn) != 0){
 KeyState.ALL |= byBitPtn;
 KeyPush.ALL |= byBitPtn;
 }
 else{
 KeyState.ALL &= (BYTE)~byBitPtn;
 }
 }
 /* 長押し＆オートリピート処理 */
 else if(nChatCnt == RPT_STTIM){
 if((byKeyDat & byBitPtn) != 0){
 switch(nLpcnt){

 case 0: /* B0はオートリピートするキー */
 KeyPush.BIT.B0 = 1;
 nChatCnt = RPT_STTIM - RPT_INTTM;
 break;
 case 1: /* B1はオートリピートするキー */
 KeyPush.BIT.B1 = 1;
 nChatCnt = RPT_STTIM - RPT_INTTM;
 break;
 case 2: /* B2は長押しできるキー */
 KeyPush.BIT.B2L = 1;
// nChatCnt = RPT_STTIM;
 break;
 case 3: /* B3は長押しできるキー */
 KeyPush.BIT.B3L = 1;
// nChatCnt = RPT_STTIM;
 break;
 default:
 break;
 }
 }
 }
 awKeyChat[nLpcnt] = nChatCnt;
 }
 }
 byBitPtn <<= 1;
 }while(++nLpcnt < VALIDBITS);

}

/**/
/* キー入力関数 */
/**/

/* 現在のキースイッチの状態を読み込む ***/

KEYDAT_T GetKeyState(void)
{
 return KeyState;
}

/* キースイッチが押されるのを待つ ***/

KEYDAT_T WaitKey(void)
{
 KeyPush.ALL = 0;
 while(KeyPush.ALL == 0){
 nop();
 }

 return KeyPush;
}

/* 押されたキースイッチを読み込む ***/

KEYDAT_T GetKey(void)
{
 KEYDAT_T KeyNow;
 BYTE byCCR;

 /* 割り込みマスク */
 byCCR = get_ccr();
 set_imask_ccr(1);
 /* キー入力データ取得 */
 KeyNow.ALL = KeyPush.ALL;
 KeyPush.ALL = 0;
 /* 割り込みマスク復帰 */
 set_ccr(byCCR);

 return KeyNow;
}

