
/**/
/*** ***/
/*** リアルタイムクロックRX-8025の制御 ***/
/*** （定周期割り込みとアラームＷ機能を使う） ***/
/*** ***/
/**/
/* 備考 : */
/* (1) この例では、RX-8025の割り込み出力を次のように接続し検知する。 */
/* /INTA → IRQ0 立下りエッジ */
/* /INTB → IRQ1 立下りエッジ */
/* (2) 指定時刻に割り込みを発生するアラーム機能は、RX-8025のアラームＷ機能を */
/* 使って実現している。アラームＤ機能は使用していない。 */
/* (3) RX-8025からのデータ読み出しは標準モードのみで、短縮モードおよび */
/* アドレスを指定しないモードは使用していない。 */
/* (4) ここから呼んでいるI2C通信関数を下記に示す。 */
/* （"riic0_i2c.h"にプロトタイプがあるものとする） */
/* SetSlaveAddr_IIC()...通信相手のスレーブアドレスセット */
/* WriteByte_A8_IIC()...指定レジスタに、１バイトのデータを書き込む */
/* WritePage_A8_IIC()...指定レジスタから順に、指定バイト数のデータを */
/* 書き込む */
/* ReadByte_A8_IIC()....指定レジスタから、１バイトのデータを読み込む */
/* ReadPage_A8_IIC()....指定レジスタから順に、指定バイト数のデータを */
/* 読み込む */

#include <machine.h>
#include <stdlib.h>
#include "typedefine.h" // ←BYTE,WORD,DWORD,BOOLなどの型宣言あり
#include "iodefine.h"

#include "riic0_i2c.h"

/**/
/* RX-8025レジスタアドレス */
#define RTCREG_SEC 0x00 /* 時計カウンタ：秒(Seconds) */
#define RTCREG_MIN 0x10 /* 時計カウンタ：分(Minutes) */
#define RTCREG_HOUR 0x20 /* 時計カウンタ：時(Hours) */
#define RTCREG_WEEK 0x30 /* 時計カウンタ：曜(Weekdays) */
#define RTCREG_DAY 0x40 /* 日付カウンタ：日(Days) */
#define RTCREG_MON 0x50 /* 日付カウンタ：月(Months) */
#define RTCREG_YEAR 0x60 /* 日付カウンタ：年(Years) */
#define RTCREG_ADJ 0x70 /* 時計精度調整レジスタ */
#define RTCREG_AW_M 0x80 /* :アラームＷ(Minute) */
#define RTCREG_AW_H 0x90 /* :アラームＷ(Hour) */
#define RTCREG_AW_W 0xA0 /* :アラームＷ(Week) */
#define RTCREG_AD_M 0xB0 /* :アラームＤ(Minute) */
#define RTCREG_AD_H 0xC0 /* :アラームＤ(Hour) */
#define RTCREG_CTR1 0xE0 /* :制御レジスタ１(Control1) */
#define RTCREG_CTR2 0xF0 /* :制御レジスタ２(Control2) */

/**/
#define IICADDR_RTC (0x64) /* RX-8025のデバイスアドレス */

// 参考 : このDTIME_T型はヘッダファイルに移し、他のファイルからも使用できるようにする必要あり
typedef union {
 unsigned char Array[7];
 struct {
 unsigned char Week; /* 0 */
 unsigned char Year; /* 1 */
 unsigned char Month; /* 2 */
 unsigned char Day; /* 3 */
 unsigned char Hour; /* 4 */
 unsigned char Min; /* 5 */
 unsigned char Sec; /* 6 */
 } DT;
} DTIME_T;

#pragma section
/**/
/* BCD <--> BIN 変換 */
/**/

static BYTE BcdToBin1(BYTE byBCD)
{
 return (BYTE)((byBCD >> 4) * 10 + (byBCD & 0x0F));

}

static BYTE BinToBcd1(BYTE byBin)
{
 return (BYTE)(((byBin / 10) << 4) + (byBin % 10));
}

/**/
/* 割り込み処理：RTCから日時を読み出す */
/**/
static BOOL bIntFlag_A;
static BOOL bIntFlag_B;

/* INTA : 定周期割り込み */

#pragma interrupt (Int_IRQ0)
void Int_IRQ0(void)
{
 /* １秒フラグセット */
 bIntFlag_A = TRUE;
}

/* INTB : アラームＷ割り込み */

#pragma interrupt (Int_IRQ1)
void Int_IRQ1(void)
{
 bIntFlag_B = TRUE;
}

/**/
/* RTCの初期化 */
/**/
/* 注意 : (1)IICインタフェースはあらかじめ初期化してあること。 */
/* : (2)ここでは、RTCスレーブアドレスはセットされない。 */
static BOOL SetTime_RTC(const BYTE *pbyDtime);
static BOOL ReadBCDTime_RTC(BYTE *pbyDtime);

BOOL Default_RTC(void)
{
 static const BYTE aCtrReg[2]={0x23, /* 0xE0:制御レジスタ１設定：WALE=0,DALE=0,24Hmode,C
LEN2=0,TEST=0, CT2:0=3(1Hz-puls) */
 0x20}; /* 0xF0:制御レジスタ２設定：VDSL=0,VDET=0,XST=1,PON
=0,CLEN1=0,CTFG=0,WAFG=0,DAFG=0 */
 static const BYTE aAlmReg[5]={0x00, /* 0x80:アラームＷ(Minute) */
 0x00, /* 0x90:アラームＷ(Hour) */
 0x00, /* 0xA0:アラームＷ(Week) */
 0x00, /* 0xB0:アラームＤ(Minute) */
 0x00}; /* 0xC0:アラームＤ(Hour) */
 static const BYTE DefDate[6]={19,1,1,12,0,0}; /* バックアップ無効時に設定されるデフォルト
日時 */
 BYTE byError;

 /* RTCのスレーブアドレスセット */
 SetSlaveAddr_IIC(IICADDR_RTC);
 byError = 0;
 /* 制御レジスタ１，２を設定（アラームＷ，Ｄは無効化） */
 if(!WritePage_A8_IIC(RTCREG_CTR1, 2, aCtrReg)){
 byError |= 0x01;
 }
 /* RTCにデフォルトの日時を設定 */
 if(!SetTime_RTC(DefDate)){
 byError |= 0x02;
 }
 /* アラームＷ，Ｄの無効を設定 */
 if(!WritePage_A8_IIC(RTCREG_AW_M, 5, aAlmReg)){
 byError |= 0x04;
 }

 return (byError == 0);
}

BOOL Init_RTC(void)
{

 BYTE byData;
 BOOL bValid,bError;

 /* IRQ0割り込み禁止 */
 IEN(ICU, IRQ0) = 0; /* IRQ0=１秒周期とアラームＤによる割り込み */
 /* IRQ1割り込み禁止 */
 IEN(ICU, IRQ1) = 0; /* IRQ1=アラームＷによる割り込み */

 /* RTCのスレーブアドレスセット */
 SetSlaveAddr_IIC(IICADDR_RTC);
 /* VDET,XST,PONビットを読み込む */
 bValid = ReadByte_A8_IIC(RTCREG_CTR2, &byData);
 /* VDET,XST,PONビットをチェック */
 bError = TRUE;
 if(((byData & 0x50) != 0) /* VDET,PONビットによる電源電圧低下検知 */
 || ((byData & 0x20) == 0) /* XSTビットによる発振停止検知 */
 || (bValid == FALSE)){
 /* RTCにデフォルトの日時などを設定 */
 bError = Default_RTC();
 }
 /* １秒フラグセット */
 bIntFlag_A = TRUE;

/*** ↓以下はRX220の場合のIRQ0,IRQ1の設定 ***/
 /* IRQ0,IRQ1（RTCの#INTA,#intB）のポート設定 */
 PORTH.PMR.BIT.B1 = 0; /* PH1をI/Oポートとして使う設定 */
 PORTH.PMR.BIT.B2 = 0; /* PH2をI/Oポートとして使う設定 */
 /* マルチファンクションピンコントローラ（MPC） */
 MPC.PWPR.BYTE = 0x00; /* 書き込みプロテクトレジスタ（先にBOWI=0にすること）
 */
 MPC.PWPR.BYTE = 0x40; /* 書き込みプロテクトレジスタ（次にPFSWE=1にして解除）
 */
 /* 端子機能制御レジスタ */
 MPC.PH1PFS.BYTE = 0x40; /* PH1端子をIRQ0入力として使用する
 */
 MPC.PH2PFS.BYTE = 0x40; /* PH2端子をIRQ1入力として使用する
 */
 /* マルチファンクションピンコントローラ（MPC） */
 MPC.PWPR.BYTE = 0x80; /* 書き込みプロテクトレジスタ（PFSWE=0,B0WI=1）
 */
 /* IRQ0,IRQ1（RTCの#INTA,#intB）のポート設定 */
 PORTH.PMR.BIT.B1 = 1; /* PH1を周辺機能として使う設定 */
 PORTH.PMR.BIT.B2 = 1; /* PH2を周辺機能として使う設定 */
 /* IRQ0,IRQ1端子デジタルフィルタ設定 */
 ICU.IRQFLTE0.BIT.FLTEN0 = 0; /* IRQ0端子デジタルフィルタ無効 */
 ICU.IRQFLTE0.BIT.FLTEN1 = 0; /* IRQ1端子デジタルフィルタ無効 */
 ICU.IRQFLTC0.BIT.FCLKSEL0 = 1; /* IRQ0端子デジタルフィルタサンプリングクロック：PCLK/8
 */
 ICU.IRQFLTC0.BIT.FCLKSEL1 = 1; /* IRQ1端子デジタルフィルタサンプリングクロック：PCLK/8
 */
 /* IRQ0,IRQ1のエッジ設定 */
 ICU.IRQCR[0].BIT.IRQMD = 1; /* IRQ0を立下りエッジ検出に */
 ICU.IRQCR[1].BIT.IRQMD = 1; /* IRQ1を立下りエッジ検出に */
 /* IRQ0,IRQ1ステータスフラグクリア */
 IR(ICU, IRQ0) = 0;
 IR(ICU, IRQ1) = 0;
 /* IRQ0,IRQ1の優先順位設定 */
 IPR(ICU, IRQ0) = 4; /* IRQ0優先順位設定 */
 IPR(ICU, IRQ1) = 4; /* IRQ1優先順位設定 */
 /* IRQ0,IRQ1端子デジタルフィルタ設定 */
 ICU.IRQFLTE0.BIT.FLTEN0 = 1; /* IRQ0端子デジタルフィルタ有効 */
 ICU.IRQFLTE0.BIT.FLTEN1 = 1; /* IRQ1端子デジタルフィルタ有効 */
 /* IRQ0割り込み許可 */
 IEN(ICU, IRQ0) = 1;
 /* IRQ1割り込み許可 */
 IEN(ICU, IRQ1) = 1;
/*** ↑ここまではRX220の場合のIRQ0,IRQ1の設定 ***/

 return bError;
}

/**/
/* RTCにバイナリで日時を設定する */
/**/

/* 注意：曜日は設定できない。 */
/* 引数 : pbyDtime = YYMMDD-hhmmssの順（各バイナリ） */
/* 戻値 : SetTime_RTC() = TRUE : 正常終了 */
/* : = FALSE : 異常あり */

BYTE aWeek(BYTE year,BYTE month,BYTE day);

static BOOL SetTime_RTC(const BYTE *pbyDtime)
{
 BYTE abyBuff[8];
 int nLpcnt;
 BOOL bResult;

 /* BCD変換し"ssmmhhwwDDMMYY"の順に並び替える */
 /* まず"ssmmhh"の3byteをセット */
 pbyDtime += 6;
 nLpcnt = 0;
 do{
 --pbyDtime;
 abyBuff[nLpcnt] = BinToBcd1(*pbyDtime);
 }while(++nLpcnt < 3);
 /* 曜日"ww"を計算してセット */
 abyBuff[nLpcnt++] = aWeek(*(pbyDtime-3), *(pbyDtime-2), *(pbyDtime-1));
 /* 次に"DDMMYY"の3byteをセット */
 do{
 --pbyDtime;
 abyBuff[nLpcnt] = BinToBcd1(*pbyDtime);
 }while(++nLpcnt < 7);

 /* RTCのスレーブアドレスセット */
 SetSlaveAddr_IIC(IICADDR_RTC);
 /* 日付・時刻設定 */
 bResult = WritePage_A8_IIC(RTCREG_SEC, 7, &abyBuff[0]);

 /* コントロールレジスタ２を読み込む */
 if(ReadByte_A8_IIC(RTCREG_CTR2, &abyBuff[0]) == FALSE)
 return FALSE;
 /* VDETフラグを'0'にする */
 abyBuff[0] &= 0xBF; /* ←VDET(b6)='0' */
 /* 制御レジスタ２を設定 */
 WriteByte_A8_IIC(RTCREG_CTR2, &abyBuff[0]);

 return bResult;
}

/**/
/* RTCから日時を読み出す */
/**/
/* 引数 : pbyDtime = 日時を格納するアドレス */
/* : WW-YYMMDD-hhmmssの順に格納する（各BCD） */
/* 戻値 : ReadBCDTime_RTC() = TRUE : 正常終了 */
/* : = FALSE : 異常あり */

static BOOL ReadBCDTime_RTC(BYTE *pbyDtime)
{ /* 0秒, 1分, 2時, 3曜, 4日, 5月, 6年 */
 static const BYTE MaskBit[7]={0x7F,0x7F,0x3F,0x07,0x3F,0x1F,0xFF};
 BYTE abyBuff[8];
 int nLpcnt;
 BOOL bResult;

 /* RTCのスレーブアドレスセット */
 SetSlaveAddr_IIC(IICADDR_RTC);
 /* 時刻，曜日，日付読み出し */
 bResult = ReadPage_A8_IIC(RTCREG_SEC, 7, &abyBuff[0]);
 /* 時刻を逆順に並び替える（不要ビットは削除） */
 pbyDtime += 7;
 nLpcnt = 0;
 do{
 *(--pbyDtime) = (BYTE)(abyBuff[nLpcnt] & MaskBit[nLpcnt]);
 }while(++nLpcnt < 3);
 /* skip WEEK area */
 nLpcnt++;
 /* 日付を逆順に並び替える（不要ビットは削除） */
 do{

 *(--pbyDtime) = (BYTE)(abyBuff[nLpcnt] & MaskBit[nLpcnt]);
 }while(++nLpcnt < 7);
 /* 曜日 */
 *(--pbyDtime) = (BYTE)(abyBuff[3] & MaskBit[3]);

 return bResult;
}

/**/
/* 現在日時を得る */
/**/
/* 引数 : nTop = 日時の先頭格納位置（0=曜，1=年，2=月，…6=秒） */
/* : pBuff = 日時格納アドレス */
/* 戻値 : GetDTbyte() = pBuff+(7-nTop) */
/* : (pBuff+0) = 曜 */
/* : (pBuff+1) = 年 */
/* : (pBuff+2) = 月 */
/* : (pBuff+3) = 日 */
/* : (pBuff+4) = 時 */
/* : (pBuff+5) = 分 */
/* : (pBuff+6) = 秒（各バイナリ） */

BYTE *GetDTbyte(int nTop, BYTE *pBuff)
{
 BYTE abyDtime[7];
 int nLpcnt;
 BYTE byBCD;

 /* RTCから日時読み込み */
 if(!ReadBCDTime_RTC(abyDtime)){
 return pBuff;
 }
 /* バイナリに変換しながら読み込む */
 for(nLpcnt=nTop;nLpcnt < 7;nLpcnt++){
 byBCD = abyDtime[nLpcnt];
 *(pBuff++) = BcdToBin1(byBCD);
 }

 return pBuff;
}

/**/
/* 引数 : pDtime = 日時格納アドレス */
/* 戻値 : なし、ただし (pDtime) = WW-YYMMDD-hhmmss（各バイナリ） */

void GetDtime(DTIME_T *pDtime)
{
 BYTE abyDtime[7];
 BYTE byBCD;
 int nLpcnt;

 /* RTCから日時読み込み */
 if(!ReadBCDTime_RTC(abyDtime))
 return;

 /* バイナリに変換しながら読み込む */
 nLpcnt = 0;
 do{
 byBCD = abyDtime[nLpcnt];
 pDtime->Array[nLpcnt] = BcdToBin1(byBCD);
 }while(++nLpcnt < 7);
}

/**/
/* 日時を設定する */
/**/
/* 注意 : 曜日は設定できない。 */
/* 引数 : pDtime = 設定する日時（YYMMDD-hhmmss）のアドレス */
/* 戻値 : なし */

void PutDtime(DTIME_T *pDtime)
{

 /* RTCに日時設定 */
 SetTime_RTC(&pDtime->Array[1]);
}

/**/
/* アラームＷ設定「時分」を読み出す */
/**/
/* 引数 : pbyHour = アラーム設定「時分」を格納するアドレス */
/* 戻値 : なし */

void GetAlarmTime(BYTE* pbyHour)
{
 BYTE abyBuff[4];

 /* RTCのスレーブアドレスセット */
 SetSlaveAddr_IIC(IICADDR_RTC);
 /* アラームＷ設定読み出し */
 if(ReadPage_A8_IIC(RTCREG_AW_M, 3, &abyBuff[0]) == FALSE)
 return;
 /* 設定の'時分'を取り出す */
 *pbyHour = BcdToBin1((BYTE)(abyBuff[1] & 0x3F));
 *(pbyHour+1) = BcdToBin1((BYTE)(abyBuff[0] & 0x7F));
}

/**/
/* アラームＷ設定「時分」を設定する */
/**/
/* 引数 : bEnable = TRUE : アラーム割り込みを許可する */
/* : = FALSE : アラーム割り込みの設定を現状維持する */
/* : pbyHour = アラーム設定「時分」のアドレス */
/* 戻値 : なし */

void PutAlarmTime(BOOL bEnable, BYTE* pbyHour)
{
 BYTE abyBuff[4];
 BYTE abyCTRL[2];

 /* バッファに'時分'のみをセットする */
 abyBuff[0] = BinToBcd1(*(pbyHour+1)); /* 分 */
 abyBuff[1] = BinToBcd1(*pbyHour); /* 時 */
 abyBuff[2] = 0x7F; /* 曜（全て指定） */
 /* RTCのスレーブアドレスセット */
 SetSlaveAddr_IIC(IICADDR_RTC);
 /* WALE保存とWAFG操作のためコントロールレジスタ１～２を読み込む */
 if(ReadPage_A8_IIC(RTCREG_CTR1, 2, &abyCTRL[0]) == FALSE)
 return;
 /* 一時WALEビットを'0'にしてアラームを止める */
 abyCTRL[0] &= 0x7F; /* WALE(b7)='0' */
 WriteByte_A8_IIC(RTCREG_CTR1, &abyCTRL[0]);
 /* アラームＷ設定書き込み */
 WritePage_A8_IIC(RTCREG_AW_M, 3, &abyBuff[0]);
 /* WAFGビットを'0'にする */
 abyCTRL[1] &= 0xFD; /* WAFG(b1)='0' */
 WriteByte_A8_IIC(RTCREG_CTR2, &abyCTRL[1]);
 /* 指示あればWALEビットを'1'にする */
 if(bEnable){
 abyCTRL[0] |= 0x80; /* WALE(b7)='1' */
 }
 WriteByte_A8_IIC(RTCREG_CTR1, &abyCTRL[0]);
}

/**/
/* アラームＷ割り込みの許可・禁止状態を読み込む */
/**/
/* 引数 : なし */
/* 戻値 : GetAlarmInt() == FALSE : アラーム割り込み禁止状態 */
/* : == TRUE : アラーム割り込み許可状態 */

BOOL GetAlarmInt(void)
{
 BYTE byCTR1;

 /* RTCのスレーブアドレスセット */
 SetSlaveAddr_IIC(IICADDR_RTC);

 /* コントロールレジスタ１を読み込む */
 if(ReadByte_A8_IIC(RTCREG_CTR1, &byCTR1) == FALSE)
 return FALSE;

 return (byCTR1 & 0x80); /* WALE(b7)='1' */
}

/**/
/* アラームＷ割り込みを許可・禁止する */
/**/
/* 引数 : bEnable = FALSE : アラーム割り込み禁止 */
/* : = TRUE : アラーム割り込み許可 */
/* 戻値 : SetAlarmInt() == FALSE : 処理中（ビジー、異常） */
/* : == TRUE : 正常受付 */

BOOL SetAlarmInt(BOOL bEnable)
{
 BYTE byCTR1;

 /* RTCのスレーブアドレスセット */
 SetSlaveAddr_IIC(IICADDR_RTC);
 /* コントロールレジスタ１を読み込む */
 if(ReadByte_A8_IIC(RTCREG_CTR1, &byCTR1) == FALSE)
 return FALSE;
 /* WALEビットを'0'または'1'にする */
 if(bEnable) byCTR1 |= 0x80; /* WALE(b7)='1' */
 else byCTR1 &= 0x7F;
 /* コントロールレジスタ１を書き込む */
 return WriteByte_A8_IIC(RTCREG_CTR1, &byCTR1);
}

/**/
/* 時計精度調整量を読み込む */
/**/
/* 引数 : pValue = 調整量（-64～+63）格納アドレス */
/* 戻値 : GetTimeAdjustment() == FALSE : 処理中（ビジー、異常） */
/* : == TRUE : 正常受付 */

BOOL GetTimeAdjustment(short* pValue)
{
 signed char cData;

 /* RTCのスレーブアドレスセット */
 SetSlaveAddr_IIC(IICADDR_RTC);
 /* 時計精度調整量レジスタを読み込む */
 if(ReadByte_A8_IIC(RTCREG_ADJ, (BYTE*)&cData) == FALSE)
 return FALSE;
 if((cData & 0x40) != 0)
 *pValue = (short)(cData | 0x80);
 else
 *pValue = (short)(cData & 0x3F);

 return TRUE;
}

/**/
/* 時計精度調整量を設定する */
/**/
/* 引数 : nValue = 調整量（-64～+63） */
/* 戻値 : SetTimeAdjustment() == FALSE : 処理中（ビジー、異常） */
/* : == TRUE : 正常受付 */

BOOL SetTimeAdjustment(short nValue)
{
 BYTE byData;

 /* RTCのスレーブアドレスセット */
 SetSlaveAddr_IIC(IICADDR_RTC);
 /* 時計精度調整量レジスタに書き込む */
 byData = (BYTE)(nValue & 0x7F);
 return WriteByte_A8_IIC(RTCREG_ADJ, &byData);
}

/**/

/* 割り込み発生フラグを読み込む */
/**/
/* 注意 : WAFGはControl1のWALEが'1'のとき'1'になる。 */
/* : CTFGはレベルモードのとき'0'を書き込むことができる。 */
/* 引数 : なし */
/* 戻値 : GetRTCIntFlag() = [76543210] */
/* : |||||||| */
/* : 0000|||| */
/* : ||||_ b0:CT20:定周期割り込み有効 */
/* : |||__ b1:WALE:アラームＷ割り込み有効 */
/* : ||___ b2:CTFG:定周期割り込みあり */
/* : |____ b3:WAFG:アラームＷ割り込みあり */

BYTE GetRTCIntFlag(void)
{
 BYTE abyCTRL[2];
 BYTE byWrk;

 /* RTCのスレーブアドレスセット */
 SetSlaveAddr_IIC(IICADDR_RTC);
 /* コントロールレジスタ１～２を読み込む */
 if(ReadPage_A8_IIC(RTCREG_CTR1, 2, &abyCTRL[0]) == FALSE)
 return 0;
 /* アラームＷ発生フラグを'0'にする */
 byWrk = (BYTE)(abyCTRL[1] & 0xF9); /* ←CTFG(b2)='0'は無効だがやっておく */
 /* 制御レジスタ２を設定 */
 WriteByte_A8_IIC(RTCREG_CTR2, &byWrk);

 byWrk = 0;
 if((abyCTRL[0] & 0x07) != 0){
 byWrk |= 0x01;
 }
 if((abyCTRL[0] & 0x80) != 0){
 byWrk |= 0x02;
 }
 if((abyCTRL[1] & 0x04) != 0){
 byWrk |= 0x04;
 }
 if((abyCTRL[1] & 0x02) != 0){
 byWrk |= 0x08;
 }

 return byWrk;
}

/**/
/* １秒フラグを読み込む */
/**/
/* 注意 : 割り込みマスクの操作はマイコンによって異なる場合がある。 */
/* 引数 : なし */
/* 戻値 : ChkSecIntFlg() = TRUE : １秒フラグON */
/* : = FALSE : １秒フラグOFF */

BOOL ChkSecIntFlg(void)
{
 DWORD dwPSW;
 BOOL bFlag;

 /* 割り込みマスク */
 dwPSW = get_psw();
 clrpsw_i();
 /* １秒フラグ読み込み＆クリア */
 bFlag = (bIntFlag_A | bIntFlag_B);
 bIntFlag_A = FALSE;
 bIntFlag_B = FALSE;
 /* 割り込みマスク復帰 */
 set_psw(dwPSW);

 return bFlag;
}

/**/
/* 曜日を計算する */
/**/

/* 構文 : BYTE aWeek(BYTE year,BYTE month,BYTE day); */
/* 引数 : year = 年（00～99、バイナリ）※20XX年代とする */
/* : month = 月（1～12、バイナリ） */
/* : day = 日（1～31、バイナリ） */
/* 戻値 : 曜日（0:日、1:月、2:火、3:水、4:木、5:金、6:土） */

BYTE aWeek(BYTE year, BYTE month, BYTE day)
{
 int nYear,nDif;

 nYear = 2000 + year;
 if(month <= 2){
 --nYear;
 month += 12;
 }
 nDif = nYear/4 - nYear/100 + nYear/400;
 return (BYTE)((nYear + nDif + (13 * (int)month + 8) / 5 + (int)day) % 7);
}

/* End of File */

