
 1 /**/
 2 /**/
 3 /*** ***/
 4 /*** ブザー制御・ビープ音発生 ***/
 5 /*** ***/
 6 /*** by: S.Suzuki ***/
 7 /**/
 8 /**/
 9 /* 注意 : ・PCLK=20MHzであること。 */
 10 /* : ・RX220の64ピンパッケージであること。 */
 11
 12 #include <machine.h>
 13 #include <stdlib.h>
 14 #include <string.h>
 15 #include "typedefine.h"
 16 #include "iodefine.h"
 17
 18
 19 #pragma section
 20 #pragma bit_order right
 21 /**/
 22 #define IOA_HZ_TCNT (5000 / 4 / 2) /* 出力周波数 4kHz（5MHz÷4kHz÷2) */
 23
 24 /**/
 25 static DWORD st_dwBeepPattern;
 26 static short st_nBeepBitPos;
 27 static short st_nBeepBitMax;
 28 static int st_nBeepRepeat;
 29 static BOOL st_bBeepOnce;
 30 static BOOL st_bBeepExec;
 31
 32 /**/
 33 /* ビープ音発生制御初期化 */
 34 /**/
 35
 36 void Init_Beep(void)
 37 {
 38 /*** MTIOC2A(PB5)端子の初期化 ***/
 39
 40 /* MTIOC2A(PB5)端子（ポートＢ）のモード設定 */
 41 PORTB.PMR.BIT.B5 = 0; /* PB5をI/Oポートとして使う設定 */
 42 /* マルチファンクションピンコントローラ（MPC） */
 43 MPC.PWPR.BYTE = 0x00; /* 書き込みプロテクトレジスタ（先にBOWI=0にすること） */
 44 MPC.PWPR.BYTE = 0x40; /* PFSレジスタ書き込み許可 */
 45 /* PB5端子機能制御レジスタ */
 46 MPC.PB5PFS.BYTE = 0x01; /* PB5端子をMTIOC2A出力として使用する */
 47 /* マルチファンクションピンコントローラ（MPC） */
 48 MPC.PWPR.BYTE = 0x80; /* PFSWEビット,PFSレジスタへの書き込みを禁止 */
 49 /* MTIOC2A(PB5)端子（ポートＢ）のモード設定 */
 50 PORTB.PMR.BIT.B5 = 1; /* PB5を周辺機能として使う設定 */
 51
 52 /* 動作モード、消費電力低減機能、ソフトウェアリセット関連レジスタへの書き込みを許可する */
 53 SYSTEM.PRCR.WORD = 0xA502;
 54 /* MTU0～MTU5のモジュールストップ解除 */
 55 MSTP(MTU) = 0; /* SYSTEM.MSTPCRA.BIT.MSTPA9 = 0;（MTU0～MTU5共通） */
 56 /* 動作モード、消費電力低減機能、ソフトウェアリセット関連レジスタへの書き込みを禁止する */
 57 SYSTEM.PRCR.WORD = 0xA500;
 58
 59 /* マルチファンクションタイマパルスユニット(MTU2)初期化 */
 60 /* 注意 : TMDRレジスタへ動作モードを設定する場合や、TCRレジスタへTCNTのカウントクロックを設定す
 る場合は、 */
 61 /* タイマスタートレジスタ（TSTR）でTCNTのカウンタ動作を停止してから行ってください。
 */
 62 /* MTU2カウント停止 */
 63 MTU.TSTR.BIT.CST2 = 0; /* MTU2.TCNTのカウント停止 */
 64 MTU2.TCR.BYTE = 0x21; /* タイマプリスケーラ選択（PCLK/4→5MHz:200nS）, TGRAのコン
 ペアマッチでTCNTクリア*/
 65 MTU2.TMDR.BYTE = 0x02; /* タイマの動作モードはPWMモード1 */
 66 MTU2.TIOR.BYTE = 0x00; /* MTIOC2A端子,MTIOC2B端子出力禁止 */
 67 MTU2.TIER.BYTE = 0x00; /* 割り込み要求（TGIA,TGIB,TCIV,TCIU）を禁止 */
 68 MTU.TSYR.BIT.SYNC2 = 0; /* MTU2.TCNTは独立して動作、他のチャネルと無関係 */
 69
 70
 71 MTU2.TCNT = 0x0000; /* タイマカウンタクリア */
 72 MTU2.TGRA = IOA_HZ_TCNT; /* 出力周波数を決めるコンペアマッチ値をセット */
 73 MTU2.TGRB = 0xFFFF; /* タイマジェネラルレジスタBは不使用 */
 74 /* MTU2コンペアマッチ割り込み禁止 */
 75 IEN(MTU2, TGIA2) = 0;

 76 IEN(MTU2, TGIB2) = 0;
 77 /* MTU2オーバフロー／アンダーフロー割り込み禁止 */
 78 IEN(MTU2, TCIV2) = 0;
 79
 80 /* 制御用変数初期化 */
 81 st_nBeepBitMax = 0;
 82 st_nBeepRepeat = 0;
 83 st_nBeepBitPos = 0;
 84 st_dwBeepPattern = 0;
 85 st_bBeepOnce = FALSE;
 86 st_bBeepExec = FALSE;
 87
 88 /* MTU2カウント開始 */
 89 MTU.TSTR.BIT.CST2 = 1;
 90 }
 91
 92 /**/
 93 /* 32ビットフラグのビットをテストする */
 94 /**/
 95
 96 static BOOL BitTest_32b(int nBitNum, DWORD* pDWordDFlag)
 97 {
 98 static const DWORD adwBitPosPtn[32]={
 99 0x00000001, 0x00000002, 0x00000004, 0x00000008,
 100 0x00000010, 0x00000020, 0x00000040, 0x00000080,
 101 0x00000100, 0x00000200, 0x00000400, 0x00000800,
 102 0x00001000, 0x00002000, 0x00004000, 0x00008000,
 103 0x00010000, 0x00020000, 0x00040000, 0x00080000,
 104 0x00100000, 0x00200000, 0x00400000, 0x00800000,
 105 0x01000000, 0x02000000, 0x04000000, 0x08000000,
 106 0x10000000, 0x20000000, 0x40000000, 0x80000000,
 107 };
 108
 109 if((*pDWordDFlag & adwBitPosPtn[nBitNum]) == 0){
 110 return FALSE;
 111 }
 112 return TRUE;
 113 }
 114
 115 /**/
 116 /* 50mS周期でブザー音を断続する */
 117 /**/
 118 /* ※50mS周期の割り込み処理から呼ばれる。 */
 119
 120 void Timer50mS_Beep(void)
 121 {
 122 if((st_nBeepRepeat <= 0) && (st_bBeepOnce == FALSE)){
 123 if(st_bBeepExec != FALSE){
 124 st_bBeepExec = FALSE;
 125 MTU2.TIOR.BIT.IOA = 0; /* MTIOC2A端子はHi-Z */
 126 }
 127 return;
 128 }
 129 if((BitTest_32b((int)st_nBeepBitPos, &st_dwBeepPattern) != FALSE)
 130 || (st_bBeepOnce != FALSE)){
 131 MTU2.TIOR.BIT.IOA = 3; /* MTIOC2A端子はコンペアマッチでトグル出力 */
 132 }
 133 else{
 134 MTU2.TIOR.BIT.IOA = 0; /* MTIOC2A端子はHi-Z */
 135 }
 136 st_bBeepExec = TRUE;
 137 st_bBeepOnce = FALSE;
 138 st_nBeepBitPos++;
 139 if((32 <= st_nBeepBitPos) || (st_nBeepBitMax <= st_nBeepBitPos)){
 140 st_nBeepBitPos = 0;
 141 --st_nBeepRepeat;
 142 }
 143 }
 144
 145 /**/
 146 /* 指定された周期でブザーを鳴らす */
 147 /**/
 148 /* 引数 : nBitMax = dwBitPatternの有効ビット数（b0から, 1～32）※1bit=50mS */
 149 /* : nRepeat = 鳴らす回数 */
 150 /* : dwBitPattern = 鳴らす断続周期（b0から各ビットが'0':停止、'1':発音） */
 151 /* 戻値 : なし */
 152
 153 void Beep(short nBitMax, int nRepeat, DWORD dwBitPattern)

 154 {
 155 st_nBeepBitMax = nBitMax;
 156 st_nBeepRepeat = nRepeat;
 157 st_nBeepBitPos = 0;
 158 st_dwBeepPattern = dwBitPattern;
 159 if((sizeof(DWORD)*8 < nBitMax) || (nBitMax <= 0) || (nRepeat <= 0)){
 160 st_nBeepRepeat = 0;
 161 MTU2.TIOR.BIT.IOA = 0; /* MTIOC2A端子はHi-Z */
 162 }
 163 }
 164
 165 void Beep_Stop(void)
 166 {
 167 st_nBeepBitMax = 0;
 168 st_nBeepRepeat = 0;
 169 st_nBeepBitPos = 0;
 170 st_dwBeepPattern = 0;
 171 MTU2.TIOR.BIT.IOA = 0; /* MTIOC2A端子はHi-Z */
 172 }
 173
 174 /**/
 175 /* ブザーをピッと１回鳴らす */
 176 /**/
 177
 178 void Beep_once(void)
 179 {
 180 st_bBeepOnce = TRUE;
 181 }
 182
 183 /**/
 184 /* ブザーをピと指定回数繰り返して鳴らす */
 185 /**/
 186
 187 void Beep_pi(int nRepeat)
 188 {
 189 Beep(2, nRepeat, 0x00000001);
 190 }
 191
 192 /**/
 193 /* ブザーをピピピピピと指定回数繰り返して鳴らす */
 194 /**/
 195
 196 void Beep_pipipi(int nRepeat)
 197 {
 198 Beep(18, nRepeat, 0x00000155);
 199 }
 200
 201 /**/
 202 /* ブザーをピ,ピ,ピと指定回数繰り返して鳴らす */
 203 /**/
 204
 205 void Beep_peapy(int nRepeat)
 206 {
 207 Beep(5, nRepeat, 0x0000007);
 208 }
 209
 210 /**/
 211 /* ブザーをピー,ピー,ピーと指定回数繰り返して鳴らす */
 212 /**/
 213
 214 void Beep_piii(int nRepeat)
 215 {
 216 Beep(20, nRepeat, 0x000003FF);
 217 }
 218
 219 /**/
 220 /* ブザーをピ,ピーと指定回数繰り返して鳴らす */
 221 /**/
 222
 223 void Beep_pipea(int nRepeat)
 224 {
 225 Beep(14, nRepeat, 0x000003C3);
 226 }
 227
 228 /**/
 229 /* ブザーをと指定回数繰り返して鳴らす */
 230 /**/
 231

 232 void Beep_pipu(int nRepeat)
 233 {
 234 Beep(16, nRepeat, 0x00003FC3);
 235 }
 236
 237
 238
 239 /* End of File */

