
 1 /**/
 2 /**/
 3 /*** ***/
 4 /*** LCDモジュールSC2004Cの制御 ***/
 5 /*** （LCD controller ST7066U） ***/
 6 /*** by: S.Suzuki ***/
 7 /**/
 8 /**/
 9 /* 注意 : ・PCLK=20MHzであること。 */
 10 /* : ・RX220の64ピンパッケージであること。 */
 11
 12 #include <machine.h>
 13 #include <stdlib.h>
 14 #include <string.h>
 15 #include "typedefine.h"
 16 #include "iodefine.h"
 17 #include "InitSystemClock.h" /* PCLK_HZ=20.0MHzであること */
 18
 19 #include "LCD_Control.h"
 20 #include "CGRamMap.h"
 21
 22 #pragma section
 23 #pragma bit_order right
 24 /**/
 25
 26 #define TMR_CLK_TIME (1e9 / PCLK_HZ * 8) /* PCLKの周期（=400nS）*/
 27 #define LCD_EPW_TCNT (30000 / TMR_CLK_TIME) /* Enable Pulse Width = 30,000nS (TCNT= 75) */
 28 #define LCD_CYC_TCNT (50000 / TMR_CLK_TIME) /* Enable Cycle Time = 50,000nS (TCNT=125) */
 29
 30 #define LCD_RS PORTB.PODR.BIT.B0
 31 #define LCD_RW PORTB.PODR.BIT.B1
 32 #define LCD_E PORTB.PODR.BIT.B3
 33 #define LCD_DATA_D PORTC.PDR.BYTE /* '0'=入力ポート、'1'=出力ポート */
 34 #define LCD_DATA_W PORTC.PODR.BYTE
 35 #define LCD_DATA_R PORTC.PIDR.BYTE
 36 #define LCD_BKLIGHT PORT5.PODR.BIT.B5 /* LCDのバックライト（0=ON, 1=OFF） */
 37 #define ATTR_BFCHK (0x01)
 38 #define ATTR_RAM (0x02)
 39
 40 #define LCDBUFFSZ (COLUMN_SZ * LINE_SZ)
 41
 42 typedef union {
 43 BYTE BYTE;
 44 struct {
 45 BYTE CheckBF:1; /* b0:0:BFを待たずに書き込み、1:BF=0を待って書き込み */
 46 BYTE RamData:1; /* b1:0:レジスタにアクセス、 1:DATA-RAMにアクセス （未使用
 ） */
 47 BYTE B0:1; /* b2:(reserved) */
 48 BYTE B1:1; /* b3:(reserved) */
 49 BYTE B2:1; /* b4:(reserved) */
 50 BYTE B3:1; /* b5:(reserved) */
 51 BYTE B4:1; /* b6:(reserved) */
 52 BYTE Execute:1; /* b7:1=実行中 （作業用） */
 53 } BIT;
 54 } S_ATTWORK;
 55 typedef union {
 56 BYTE BYTE; /* ATTR_BFCHK, ATTR_RAM で指示 */
 57 struct {
 58 BYTE CheckBF:1; /* b0:0:約40uS後に書き込み、1:BF=0を待って書き込み */
 59 BYTE RamData:1; /* b1:0:レジスタにアクセス、1:DATA-RAMにアクセス */
 60 BYTE B2:1; /* b2:(reserved) */
 61 BYTE B3:1; /* b3:(reserved) */
 62 BYTE B4:1; /* b4:(reserved) */
 63 BYTE B5:1; /* b5:(reserved) */
 64 BYTE B6:1; /* b6:(reserved) */
 65 BYTE B7:1; /* b7:(reserved) */
 66 } BIT;
 67 } S_ATTDATA;
 68
 69
 70 static S_ATTDATA st_astAttrBuff[LCDBUFFSZ]; /* LCDへのコマンド種類格納バッファ */
 71 static BYTE st_abyCodeBuff[LCDBUFFSZ]; /* LCDへのコマンド格納バッファ */
 72 static volatile WORD st_wDReadPtr; /* st_astAttrBuff[],st_abyCodeBuff[]の読み込みポイ
 ンタ */
 73 static volatile WORD st_wDWritePtr; /* st_astAttrBuff[],st_abyCodeBuff[]の書き込みポイ
 ンタ */
 74 static volatile S_ATTWORK st_stAttribute; /* st_byInstCodeのコマンド種類と実行状況を示す */
 75 static BYTE st_byBusyFlag; /* b7=BF(BusyFlag) */

 76 static WORD st_wWaitCnt; /* BusyFlagの最大待ち時間を計測（LCD_CYC_TCNT単位で
 カウント） */
 77 static BOOL st_bScrollOn; /* !=0で表示をスクロールするモード */
 78
 79 /**/
 80 /* ディスプレイ制御初期化 */
 81 /**/
 82 /* 注意 : MTU0～MTU4,MTU6～MTU10のコンペアマッチ割り込みは、TCNT=TGRとなった */
 83 /* : 次のカウントで発生するため、TGRで指定したカウント値より１カウント分 */
 84 /* : 多い時間になってしまう。従って、CMCORには希望のカウント値―１の値を */
 85 /* : 設定する。 */
 86 /* : ただし、MTU5,MTU11はTGRnのタイミングで割り込みが発生する。 */
 87
 88 void Init_DispCtrl(void)
 89 {
 90 /* I/Oポート（PB,PC）の初期化 */
 91 /* PB0,PB1,PB3のモード設定 */
 92 PORTB.PMR.BYTE = (BYTE)(PORTB.PMR.BYTE & 0xF4); /* PB3,PB1,PB0をI/Oポートとして使う設定 */

 93 PORTB.PODR.BYTE = (BYTE)(PORTB.PODR.BYTE & 0xF4); /* 初期状態としてPB3=0,PB1=0,PB0=0 */

 94 PORTB.PDR.BYTE = (BYTE)(PORTB.PDR.BYTE | 0x0B); /* PB3,PB1,PB0を出力ポートとして使う設定 */

 95 /* 34ピンをPB6→PC0,33ピンをPB7→PC1に設定（64ピンRX220専用） */
 96 PORTB.PMR.BYTE = (BYTE)(PORTB.PMR.BYTE & 0x3F); /* PB7,PB6をI/Oポートとして使う設定 */
 97 PORTB.PDR.BYTE = (BYTE)(PORTB.PDR.BYTE & 0x3F); /* PB7,PB6を入力ポートとして使う設定 */
 98 PORTB.PCR.BYTE = (BYTE)(PORTB.PCR.BYTE & 0x3F); /* PB7,PB6の入力プルアップ抵抗を無効にする
 設定 */
 99 PORT.PSRA.BIT.PSEL6 = 1; /* ポート切り替えレジスタAで34ピン（PB6）をPC0とする */
 100 PORT.PSRA.BIT.PSEL7 = 1; /* ポート切り替えレジスタAで33ピン（PB7）をPC1とする */
 101 /* PC7～PC0のモード設定 */
 102 PORTC.PMR.BYTE = 0x00; /* PC7～PC0をI/Oポートとして使う */
 103 PORTC.PODR.BYTE = 0x00; /* PC7～PC0の初期出力状態を全て'0'とする */
 104 PORTC.PDR.BYTE = 0x00; /* PC7～PC0を入力ポートとして使う設定 */
 105 /* P55のモード設定（バックライト制御用） */
 106 PORT5.PMR.BIT.B5 = 0; /* P55をI/Oポートとして使う */
 107 PORT5.PODR.BIT.B5 = 0; /* P55の初期出力状態を'0'とする */
 108 PORT5.PDR.BIT.B5 = 1; /* P55を出力ポートとして使う設定 */
 109
 110 /* 動作モード、消費電力低減機能、ソフトウェアリセット関連レジスタへの書き込みを許可する */
 111 SYSTEM.PRCR.WORD = 0xA502; /* プロテクトレジスタ（PRCR） */
 112 /* TMR2,TMR3のモジュールストップ解除 */
 113 MSTP(TMR23) = 0; /* SYSTEM.MSTPCRA.BIT.MSTPA4 = 0; (TMR2, TMR3共通) */
 114 /* 動作モード、消費電力低減機能、ソフトウェアリセット関連レジスタへの書き込みを禁止する */
 115 SYSTEM.PRCR.WORD = 0xA500; /* プロテクトレジスタ（PRCR） */
 116
 117 /* ８ビットタイマ(TMR2)初期化 */
 118 TMR2.TCR.BYTE = 0xC8; /* コンペアマッチAによりカウンタクリア、コンペアマッチA,Bに
 よる割り込み要求を許可 */
 119 TMR2.TCSR.BYTE = 0x00; /* TMO2端子出力は変化しない */
 120 TMR2.TCCR.BYTE = 0x0A; /* カウンタクロック＝PCLK/8をセット */
 121 TMR2.TCSTR.BYTE = 0x00; /* ELCによるカウント停止 */
 122 TMR2.TCORA = LCD_CYC_TCNT -1; /* Enable Cycle Timeをセット */
 123 TMR2.TCORB = LCD_EPW_TCNT -1; /* Enable Pulse Widthをセット */
 124 TMR2.TCNT = 0; /* タイマカウンタクリア */
 125
 126 /* TMR2の割り込み優先順位セット */
 127 IPR(TMR2,) = 5; /* CMIA2,CMIB2,OVI2は共通（レベル５は例） */
 128 /* TMR2の割り込み要求ステータスフラグクリア */
 129 IR(TMR2, CMIA2) = 0;
 130 IR(TMR2, CMIB2) = 0;
 131 IR(TMR2, OVI2) = 0;
 132 /* TMR2のオーバフロー割り込み禁止 */
 133 IEN(TMR2, OVI2) = 0;
 134 /* コンペアマッチ割り込み許可 */
 135 IEN(TMR2, CMIA2) = 1; /* コンペアマッチＡ */
 136 IEN(TMR2, CMIB2) = 1; /* コンペアマッチＢ */
 137
 138 /* 表示データポインタ初期化 */
 139 st_wDReadPtr = 0;
 140 st_wDWritePtr = 0;
 141 st_byBusyFlag = 0xFF;
 142 /* LCD制御OFF */
 143 LCD_RS = 0; /* RS = '0' */
 144 LCD_RW = 1; /* R/W = '1'(Read) */
 145 LCD_E = 0; /* E = '0' */
 146
 147 }

 148
 149
 150 /**/
 151 /* データ読み込み／書き込み処理の補助関数 */
 152 /**/
 153
 154 static void Wr_Cycle_Data(void)
 155 {
 156 /* Function書き込み準備 */
 157 /* RegisterSelectを指定する */
 158 if(st_astAttrBuff[st_wDReadPtr].BIT.RamData == 0)
 159 LCD_RS = 0; /* RS = '0' */
 160 else
 161 LCD_RS = 1; /* RS = '1' */
 162 /* Read/Writeをライトに */
 163 LCD_RW = 0; /* R/W = '0' (Write) */
 164 /* EnableをHighにする */
 165 LCD_E = 1; /* E = '1' */
 166 /* LCDデータポート（PC7～PC0）に書き込みデータを出力する */
 167 LCD_DATA_W = st_abyCodeBuff[st_wDReadPtr];
 168 /* 読み込みポインタを進める */
 169 if(++st_wDReadPtr >= LCDBUFFSZ){
 170 st_wDReadPtr = 0;
 171 }
 172 /* LCDデータポート（PC7～PC0）を出力ポートにする */
 173 LCD_DATA_D = 0xFF;
 174 }
 175
 176 static void Rd_Cycle_Busy(void)
 177 {
 178 st_byBusyFlag = 0xFF;
 179 /* LCDデータポート（PC7～PC0）を入力ポートに */
 180 LCD_DATA_D = 0x00;
 181 /* RegisterSelectをLow(=Function)にする */
 182 LCD_RS = 0; /* RS = '0' */
 183 /* Read/Writeをリードに */
 184 LCD_RW = 1; /* R/W = '1' (Read) */
 185 /* EnableをHighにする */
 186 LCD_E = 1; /* E = '1' */
 187 }
 188
 189
 190 /**/
 191 /* TMR2タイマ割り込みによるデータ読み込み／書き込み処理 */
 192 /**/
 193 /* ※CMIA,CMIB,OVI2はエッジ検知割り込みのため、IRフラグは自動的にクリアされる。 */
 194 /* ※タイマカウンタはTCORAのコンペアマッチでクリア */
 195
 196 /* コンペアマッチＡ割り込み **/
 197 /* ※LCD_CYC_TCNT（100μS）周期で発生。 */
 198
 199 #pragma interrupt (Int_TMR2_CMIA2)
 200 void Int_TMR2_CMIA2(void)
 201 {
 202 /* 書き込みデータがない場合 */
 203 if(st_wDReadPtr == st_wDWritePtr){
 204 if(st_stAttribute.BIT.Execute != 0){
 205 /* Read/Writeサイクル停止中を示す */
 206 st_stAttribute.BIT.Execute = 0;
 207 /* LCDデータポート（PC7～PC0）を入力ポートに */
 208 LCD_DATA_D = 0x00;
 209 /* RegisterSelectをLow(=Function)にする */
 210 LCD_RS = 0; /* RS = '0' */
 211 /* Read/Writeをリードに */
 212 LCD_RW = 1; /* R/W = '1'(Read mode) */
 213 /* EnableをLowにする */
 214 LCD_E = 0; /* E = '0' */
 215 }
 216 return;
 217 }
 218 /* 書き込みデータがある場合 */
 219 else{
 220 st_stAttribute.BIT.Execute = 1;
 221 /* BusyFlag読み込みを実行中だった場合 */
 222 if(st_stAttribute.BIT.CheckBF != 0){
 223 /* BusyFlag=1だった場合 */
 224 if((st_byBusyFlag & 0x80) != 0){
 225 /* BusyFlag読み込みをカウント */

 226 if(++st_wWaitCnt < 100){ /* 10mSまで待つ（100μS×100=10mS） */
 227 /* BusyFlag再読み込み */
 228 Rd_Cycle_Busy();
 229 return;
 230 }
 231 } /* 注：Busyがカウントオーバーの場合は書き込みを強行する */
 232 /* BusyFlag=0だった場合 */
 233 st_stAttribute.BIT.CheckBF = 0;
 234 /* 書き込みデータを出力し、読み込みポインタを進める */
 235 Wr_Cycle_Data();
 236 }
 237 else{
 238 /* 次はBusyFlagのチェックかデータ書き込みかメモする */
 239 st_stAttribute.BIT.RamData = st_astAttrBuff[st_wDReadPtr].BIT.RamData;
 240 st_stAttribute.BIT.CheckBF = st_astAttrBuff[st_wDReadPtr].BIT.CheckBF;
 241 /* BusyFlagをチェックする場合（読み込み） */
 242 if(st_stAttribute.BIT.CheckBF != 0){
 243 /* BusyFlag読み込みカウンタリセット */
 244 st_wWaitCnt = 0;
 245 /* BusyFlag読み込み */
 246 Rd_Cycle_Busy();
 247 }
 248 /* BusyFlagをチェックしない場合（書き込みのみ） */
 249 else{
 250 /* 書き込みデータを出力し、読み込みポインタを進める */
 251 Wr_Cycle_Data();
 252 }
 253 }
 254 }
 255 }
 256
 257 /* コンペアマッチＢ割り込み **/
 258 /* ※コンペアマッチＡ割り込みの、LCD_EPW_TCNT（40μS）後に発生。 */
 259
 260 #pragma interrupt (Int_TMR2_CMIB2)
 261 void Int_TMR2_CMIB2(void)
 262 {
 263 /* BusyFlagをチェックする場合（読み込み） */
 264 if(st_stAttribute.BIT.CheckBF != 0){
 265 /* LCDデータポート（PC7～PC0）からデータを読み込む */
 266 st_byBusyFlag = LCD_DATA_R;
 267 }
 268 /* EnableをLowにする */
 269 LCD_E = 0; /* E = '0' */
 270 }
 271
 272
 273
 274 /**/
 275 /* 周期割り込み処理 */
 276 /**/
 277 /* 1mS周期(CYCLE_1M)で実行 */
 278 static volatile WORD wTmrDwnCnt1_1mS;
 279 static volatile WORD wTmrDwnCnt2_1mS;
 280
 281 void Timer01mS_LCDC(void)
 282 {
 283 if(wTmrDwnCnt1_1mS != 0){
 284 --wTmrDwnCnt1_1mS;
 285 }
 286 if(wTmrDwnCnt2_1mS != 0){
 287 --wTmrDwnCnt2_1mS;
 288 }
 289 }
 290
 291 /**/
 292 /* １秒周期で実行 */
 293 static volatile WORD wTmrDwnCnt_1sec;
 294
 295 void Timer1sec_LCDC(void)
 296 {
 297
 298 if(wTmrDwnCnt_1sec != 0){
 299 --wTmrDwnCnt_1sec;
 300 if(wTmrDwnCnt_1sec == 0){
 301 if(st_SetOption.BIT.BackLight != 0){
 302 LCD_BKLIGHT = _OFF;
 303 }

 304 }
 305 }
 306 }
 307
 308 /**/
 309 /**/
 310 /* */
 311 /* LCD表示関数 */
 312 /* */
 313 /**/
 314 /**/
 315
 316 static const BYTE st_abyLocTable[LINE_SZ]={0x00, 0x40, 0x14, 0x54}; /* 各行の先頭DATA-RAMアドレス *
 /
 317
 318 static char st_abyFrameBuff[LINE_SZ][COLUMN_SZ];
 319 static int st_nCurPosX,st_nCurPosY;
 320
 321 /**/
 322 /* LCDのバックライトを点灯／消灯 */
 323 /**/
 324
 325 void ON_BackLight(void)
 326 {
 327 wTmrDwnCnt_1sec = BKLIGHT_OFFTIME;
 328 LCD_BKLIGHT = _ON;
 329 }
 330
 331 BOOL Check_BackLight(void)
 332 {
 333 if(LCD_BKLIGHT == _OFF){
 334 return FALSE;
 335 }
 336 return TRUE;
 337 }
 338
 339 /**/
 340 /* 指定時間待つ */
 341 /**/
 342 /* 注意 : 指定時間が経過するまで戻らない、ただし割り込みは受け付ける。 */
 343 /* 引数 : wTimeMsec = 待ち時間（CYCLE_1M単位） */
 344 /* 戻値 : なし */
 345
 346 static void Wait_Simple(WORD wTimeMsec)
 347 {
 348 wTmrDwnCnt1_1mS = wTimeMsec;
 349 while(wTmrDwnCnt1_1mS != 0);
 350 }
 351
 352 /**/
 353 /* LCDに１バイト書き込み */
 354 /**/
 355 /* 注意 : 書き込みバッファがフルの場合は何もしないでFALSEで戻る。 */
 356 /* 引数 : byRS = ATTR_BFCHK | ATTR_RAMの指定、指定なしでレジスタに書き込み */
 357 /* : ・ATTR_BFCHKの指定でBusyFlagチェック有り */
 358 /* : ・ATTR_RAMの指定でRAM-DATAに書き込み */
 359 /* : byData = レジスタまたはDATA-RAMに書き込むデータ */
 360 /* 戻値 : WriteData1() == TRUE : 正常 */
 361 /* : == FALSE : 異常（書き込みバッファフル） */
 362
 363 static BOOL WriteData1(BYTE byRS, BYTE byData)
 364 {
 365 WORD wWPtr;
 366
 367 wWPtr = (WORD)(st_wDWritePtr + 1);
 368 if(wWPtr >= LCDBUFFSZ){
 369 wWPtr = 0;
 370 }
 371 wTmrDwnCnt2_1mS = 100;
 372 while(wWPtr == st_wDReadPtr){
 373 if(wTmrDwnCnt2_1mS == 0){
 374 return FALSE;
 375 }
 376 }
 377 st_astAttrBuff[st_wDWritePtr].BYTE = (BYTE)(byRS & (ATTR_BFCHK | ATTR_RAM));
 378 st_abyCodeBuff[st_wDWritePtr] = byData;
 379 st_wDWritePtr = wWPtr;
 380

 381 return TRUE;
 382 }
 383
 384 /**/
 385 /* LCDにユーザー定義文字をセットする */
 386 /**/
 387 /* 注意 : ST7066Uでは、コード0x00～0x07の８文字がユーザー定義可能。 */
 388 /* 引数 : なし */
 389 /* 戻値 : Set_UserCG() == TRUE : 正常 */
 390 /* : == FALSE : 異常（書き込みバッファフル） */
 391
 392 static BOOL Set_UserCG(void)
 393 {
 394 int nCode,nLine;
 395 BYTE byAddr;
 396
 397 byAddr = 0;
 398 nCode = 0;
 399 do{
 400 /* Set CGRAM Address */
 401 if(WriteData1(ATTR_BFCHK, (BYTE)(byAddr | 0x40)) == FALSE){
 402 return FALSE;
 403 }
 404 nLine = 0;
 405 do{
 406 /* Write CG-DATA */
 407 if(WriteData1(ATTR_BFCHK | ATTR_RAM, UserCGpatten[nCode][nLine]) == FALSE){
 408 return FALSE;
 409 }
 410 }while(++nLine < 8);
 411 byAddr += 8;
 412 }while(++nCode < 8);
 413
 414 return TRUE;
 415 }
 416
 417 /**/
 418 /* ディスプレイ初期化 */
 419 /**/
 420 /* 注意 : ・割り込み許可状態で実行すること。 */
 421 /* : ・表示バッファ書き込みに関するエラーは無視される。 */
 422 /* : ・スクロールなしにセットされる。 */
 423 /* 引数 : なし */
 424 /* 戻値 : なし */
 425
 426 void Init_Display(void)
 427 {
 428 static const BYTE LcdCtrlParam[]={
 429 0x38, /* Function set (DL=1,N=0,F=0 : ８ビットバス、１行表示モード、５×８
 ドットフォント) */
 430 0x38, /* Function set (DL=1,N=0,F=0 :) */
 431 0x38, /* Function set (DL=1,N=0,F=0 :) */
 432 0x0C, /* Display ON/OFF control (D=1,C=0,B=0 : ディスプレイオン、カーソル表示なし、
 カーソル点滅オフ) */
 433 };
 434 const BYTE* pbyParams;
 435 int nLpcnt;
 436
 437 /* LCDコントローラ初期化 */
 438 pbyParams = LcdCtrlParam;
 439 nLpcnt = 0;
 440 do{
 441 /* LCDにコマンド送信 */
 442 WriteData1(0, *pbyParams); /* Function set */
 443 pbyParams++;
 444 /* 5mS待つ */
 445 Wait_Simple(5);
 446 }while(++nLpcnt < 2);
 447 do{
 448 /* LCDにコマンド送信 */
 449 WriteData1(ATTR_BFCHK, *pbyParams); /* Display Control set */
 450 pbyParams++;
 451 /* 5mS待つ */
 452 Wait_Simple(5);
 453 }while(++nLpcnt < 4);
 454
 455 /* LCDにコマンド送信 */
 456 WriteData1(ATTR_BFCHK, 0x01); /* Display clear */

 457 Wait_Simple(5); /* 5mS待つ（DisplayClearは最大1.52mSかかるため） */
 458 /* LCDにコマンド送信 */
 459 WriteData1(ATTR_BFCHK, 0x06); /* Entry mode set (I/D=1,S=0 : カーソルは右移動、DDRAMアド
 レスは＋１、ディスプレイシフト無し) */
 460
 461 /* ユーザー定義文字をセット */
 462 Set_UserCG();
 463
 464 /* フレームメモリ消去 */
 465 st_nCurPosY = LINE_SZ;
 466 do{
 467 --st_nCurPosY;
 468 st_nCurPosX = COLUMN_SZ;
 469 do{
 470 --st_nCurPosX;
 471 st_abyFrameBuff[st_nCurPosY][st_nCurPosX] = ' ';
 472 }while(st_nCurPosX != 0);
 473 }while(st_nCurPosY != 0);
 474
 475 /* スクロールしないをセット */
 476 st_bScrollOn = FALSE;
 477 /* LCDバックライトをONにする */
 478 ON_BackLight();
 479 }
 480
 481
 482 /**/
 483 /* スクロールの有無を設定 */
 484 /**/
 485 /* 注意 : デフォルトではスクロールなしになっている。 */
 486 /* 引数 : bScrollSW = スクロール設定（FALSE:なし、TRUE:あり） */
 487 /* 戻値 : なし */
 488
 489 void Set_DispScroll(BOOL bScrollSW)
 490 {
 491 /* スクロールスイッチセット */
 492 st_bScrollOn = bScrollSW;
 493 }
 494
 495
 496 /**/
 497 /* ディスプレイ消去 */
 498 /**/
 499 /* 注意 : 表示位置(st_nCurPosX,st_nCurPosY)はそれぞれ０になる。 */
 500 /* 引数 : なし */
 501 /* 戻値 : Clear_Display() == TRUE : 正常 */
 502 /* : == FALSE : 異常（書き込みバッファフル） */
 503
 504 BOOL Clear_Display(void)
 505 {
 506 /* Display clear */
 507 if(WriteData1(ATTR_BFCHK, 0x01) == FALSE){
 508 return FALSE;
 509 }
 510 /* 5mSタイマセット */
 511 wTmrDwnCnt1_1mS = 5;
 512 /* フレームメモリ消去 */
 513 st_nCurPosY = LINE_SZ;
 514 do{
 515 --st_nCurPosY;
 516 st_nCurPosX = COLUMN_SZ;
 517 do{
 518 --st_nCurPosX;
 519 st_abyFrameBuff[st_nCurPosY][st_nCurPosX] = ' ';
 520 }while(st_nCurPosX != 0);
 521 }while(st_nCurPosY != 0);
 522 /* 最大5mS待つ（DisplayClearは最大1.52mSかかるため） */
 523 while(wTmrDwnCnt1_1mS != 0);
 524
 525 return TRUE;
 526 }
 527
 528 /**/
 529 /* 現在の表示位置から右側をクリアする */
 530 /**/
 531 /* 機能 : 現在表示行の、現在の桁位置から右側を空白で埋める。 */
 532 /* 引数 : なし */
 533 /* 戻値 : なし */

 534
 535 BOOL Clear_RightSide(void)
 536 {
 537 int nPosX;
 538
 539 nPosX = st_nCurPosX;
 540 while(nPosX < COLUMN_SZ){
 541 if(Disp_Character(' ') == FALSE){
 542 return FALSE;
 543 }
 544 nPosX++;
 545 }
 546
 547 return TRUE;
 548 }
 549
 550 /**/
 551 /* スクロールアップ（表示シフトアップ） */
 552 /**/
 553 /* 注意 : 表示位置(st_nCurPosX,st_nCurPosY)は変更されない。 */
 554 /* 引数 : なし */
 555 /* 戻値 : Scroll_Up() == TRUE : 正常 */
 556 /* : == FALSE : 異常（書き込みバッファフル） */
 557
 558 BOOL Scroll_Up(void)
 559 {
 560 int nPosX,nPosY;
 561 BYTE byAddr;
 562
 563 /* フレームバッファst_abyFrameBuff[]の内容をシフトアップ */
 564 for(nPosY=0;nPosY < LINE_SZ-1;nPosY++){
 565 for(nPosX=0;nPosX < COLUMN_SZ;nPosX++){
 566 st_abyFrameBuff[nPosY][nPosX] = st_abyFrameBuff[nPosY+1][nPosX];
 567 }
 568 }
 569 /* フレームバッファの最下行クリア */
 570 for(nPosX=0;nPosX < COLUMN_SZ;nPosX++){
 571 st_abyFrameBuff[nPosY][nPosX] = ' ';
 572 }
 573 /* フレームバッファを全画面再表示 */
 574 for(nPosY=0;nPosY < LINE_SZ;nPosY++){
 575 /* DATA-RAMのアドレスを指定 */
 576 byAddr = (BYTE)(st_abyLocTable[nPosY] + 0x80);
 577 if(WriteData1(ATTR_BFCHK, byAddr) == FALSE){
 578 return FALSE;
 579 }
 580 /* フレームバッファの内容をDATA-RAMに転送して表示 */
 581 for(nPosX=0;nPosX < COLUMN_SZ;nPosX++){
 582 if(WriteData1(ATTR_BFCHK | ATTR_RAM, (BYTE)st_abyFrameBuff[nPosY][nPosX]) == FALSE){
 583 return FALSE;
 584 }
 585 }
 586 }
 587 /* 表示位置（DATA-RAMのアドレス）を元に戻す */
 588 // byAddr = (BYTE)(st_nCurPosX + st_abyLocTable[st_nCurPosY] + 0x80);
 589 // WriteData1(ATTR_BFCHK, byAddr);
 590
 591 return TRUE;
 592 }
 593
 594
 595 /**/
 596 /* スクロールダウン（表示シフトダウン） */
 597 /**/
 598 /* 注意 : 表示位置(st_nCurPosX,st_nCurPosY)は変更されない。 */
 599 /* 引数 : なし */
 600 /* 戻値 : Scroll_Down() == TRUE : 正常 */
 601 /* : == FALSE : 異常（書き込みバッファフル） */
 602
 603 BOOL Scroll_Down(void)
 604 {
 605 int nPosX,nPosY;
 606 BYTE byAddr;
 607
 608 /* フレームバッファst_abyFrameBuff[]の内容をシフトダウン */
 609 for(nPosY=LINE_SZ-1;nPosY > 0;nPosY--){
 610 for(nPosX=0;nPosX < COLUMN_SZ;nPosX++){
 611 st_abyFrameBuff[nPosY][nPosX] = st_abyFrameBuff[nPosY-1][nPosX];

 612 }
 613 }
 614 /* フレームバッファの先頭行クリア */
 615 for(nPosX=0;nPosX < COLUMN_SZ;nPosX++){
 616 st_abyFrameBuff[nPosY][nPosX] = ' ';
 617 }
 618 /* フレームバッファを全画面再表示 */
 619 for(nPosY=0;nPosY < LINE_SZ;nPosY++){
 620 /* DATA-RAMのアドレスを指定 */
 621 byAddr = (BYTE)(st_abyLocTable[nPosY] + 0x80);
 622 if(WriteData1(ATTR_BFCHK, byAddr) == FALSE){
 623 return FALSE;
 624 }
 625 /* フレームバッファの内容をDATA-RAMに転送して表示 */
 626 for(nPosX=0;nPosX < COLUMN_SZ;nPosX++){
 627 if(WriteData1(ATTR_BFCHK | ATTR_RAM, (BYTE)st_abyFrameBuff[nPosY][nPosX]) == FALSE){
 628 return FALSE;
 629 }
 630 }
 631 }
 632 /* 表示位置（DATA-RAMのアドレス）を元に戻す */
 633 // byAddr = (BYTE)(st_nCurPosX + st_abyLocTable[st_nCurPosY] + 0x80);
 634 // WriteData1(ATTR_BFCHK, byAddr);
 635
 636 return TRUE;
 637 }
 638
 639
 640 /**/
 641 /* １文字表示 */
 642 /**/
 643 /* 注意 : ・フォントがないコードの選別は省略している、使用側で注意。 */
 644 /* : ・ユーザー定義文字のCG_0は0x00=NUL（終端）と同じコードのためプログ */
 645 /* : ラム中ではCG_REVS=0x0B)として扱い、ここで0x00に変換する。 */
 646 /* 機能 : (st_nCurPosY)(st_nCurPosX)が示す位置に表示する。 */
 647 /* : 画面がいっぱいになるとスクロールする。 */
 648 /* 引数 : chChar = 表示文字（ASCII、ユーザー定義文字CG_??が使用可能） */
 649 /* : ※ユーザ定義文字はヘッダファイル LCD_Controlh を参照 */
 650 /* 戻値 : Disp_Character() == TRUE : 正常 */
 651 /* : == FALSE : 異常（書き込みバッファフル） */
 652 /* : (st_nCurPosY)(st_nCurPosX) : 新しい表示位置 */
 653
 654 BOOL Disp_Character(char chChar)
 655 {
 656 BYTE byAddr;
 657
 658 switch(chChar){
 659 case _CR:
 660 st_nCurPosX = 0;
 661 break;
 662 case _LF:
 663 st_nCurPosY++;
 664 if(st_nCurPosY >= LINE_SZ){
 665 /* スクロールしない場合 */
 666 if(!st_bScrollOn)
 667 break;
 668 st_nCurPosY = LINE_SZ-1;
 669 /* シフトアップ */
 670 if(Scroll_Up() == FALSE){
 671 return FALSE;
 672 }
 673 }
 674 /* DATA-RAMのアドレスを指定（b7='1'はDDRAMのアドレスセット） */
 675 byAddr = (BYTE)(st_nCurPosX + st_abyLocTable[st_nCurPosY] + 0x80);
 676 if(WriteData1(ATTR_BFCHK, byAddr) == FALSE){
 677 return FALSE;
 678 }
 679 break;
 680 case _BS:
 681 /* 表示位置を１行上に戻す */
 682 if(st_nCurPosX == 0){
 683 --st_nCurPosY;
 684 st_nCurPosX = COLUMN_SZ;
 685 }
 686 /* 表示位置を１つ左に戻す */
 687 --st_nCurPosX;
 688 /* 表示領域外では何もしない */
 689 if((st_nCurPosX < 0) || (COLUMN_SZ <= st_nCurPosX))

 690 break;
 691 if((st_nCurPosY < 0) || (LINE_SZ <= st_nCurPosY))
 692 break;
 693 /* 空白をフレームバッファに格納 */
 694 st_abyFrameBuff[st_nCurPosY][st_nCurPosX] = ' ';
 695 /* DATA-RAMのアドレスを指定（b7='1'はDDRAMのアドレスセット） */
 696 byAddr = (BYTE)(st_nCurPosX + st_abyLocTable[st_nCurPosY] + 0x80);
 697 if(WriteData1(ATTR_BFCHK, byAddr) == FALSE){
 698 return FALSE;
 699 }
 700 /* DATA-RAMに転送して表示 */
 701 if(WriteData1(ATTR_BFCHK | ATTR_RAM, ' ') == FALSE){
 702 return FALSE;
 703 }
 704 /* DATA-RAMのアドレスを再度指定（b7='1'はDDRAMのアドレスセット） */
 705 byAddr = (BYTE)(st_nCurPosX + st_abyLocTable[st_nCurPosY] + 0x80);
 706 if(WriteData1(ATTR_BFCHK, byAddr) == FALSE){
 707 return FALSE;
 708 }
 709 break;
 710 case CG_REVS: /* CG_REVS(=0x0B)はCG_0(=0x00)に変換する */
 711 chChar = 0;
 712 default: /* ※フォントがないコードの選別は省略する、使用側で注意。 */
 713 /* 表示領域外では何もしない */
 714 if((st_nCurPosX < 0) || (COLUMN_SZ <= st_nCurPosX))
 715 break;
 716 if((st_nCurPosY < 0) || (LINE_SZ <= st_nCurPosY))
 717 break;
 718 /* 表示文字をフレームバッファに格納 */
 719 st_abyFrameBuff[st_nCurPosY][st_nCurPosX] = chChar;
 720 /* DATA-RAMに転送して表示 */
 721 if(WriteData1(ATTR_BFCHK | ATTR_RAM, (BYTE)chChar) == FALSE){
 722 return FALSE;
 723 }
 724
 725 /* 表示位置（カーソル位置）更新 */
 726 st_nCurPosX++;
 727 if(st_nCurPosX >= COLUMN_SZ){
 728 st_nCurPosX = 0;
 729 st_nCurPosY++;
 730 if(st_nCurPosY >= LINE_SZ){
 731 /* スクロールしない場合 */
 732 if(!st_bScrollOn)
 733 break;
 734 st_nCurPosY = LINE_SZ-1;
 735 /* シフトアップ */
 736 if(Scroll_Up() == FALSE){
 737 return FALSE;
 738 }
 739 }
 740 /* DATA-RAMのアドレスを指定 */
 741 byAddr = (BYTE)(st_abyLocTable[st_nCurPosY] + 0x80);
 742 if(WriteData1(ATTR_BFCHK, byAddr) == FALSE){
 743 return FALSE;
 744 }
 745 }
 746 break;
 747 }
 748
 749 return TRUE;
 750 }
 751
 752
 753 /**/
 754 /* 表示位置（カーソル位置）セット */
 755 /**/
 756 /* 注意 : 表示位置が範囲外の場合は何もしない。 */
 757 /* 引数 : nPosX = 横（桁）位置（0～COLUMN_SZ-1） */
 758 /* : nPosY = 縦（行）位置（0～LINE_SZ-1） */
 759 /* 戻値 : Set_DispPos() == TRUE : 正常 */
 760 /* : == FALSE : 異常（書き込みバッファフル） */
 761 /* : (st_nCurPosY)(st_nCurPosX) : 新しい表示位置 */
 762
 763 BOOL Set_DispPos(int nPosX, int nPosY)
 764 {
 765 BYTE byAddr;
 766
 767 /* 格納 */

 768 st_nCurPosX = nPosX;
 769 st_nCurPosY = nPosY;
 770 /* 表示領域外では何もしない */
 771 if((nPosX < 0) || (COLUMN_SZ <= nPosX))
 772 return TRUE;
 773 if((nPosY < 0) || (LINE_SZ <= nPosY))
 774 return TRUE;
 775 /* DATA-RAMのアドレスを指定（b7='1'はDDRAMのアドレスセット） */
 776 byAddr = (BYTE)(nPosX + st_abyLocTable[nPosY] + 0x80);
 777 return WriteData1(ATTR_BFCHK, byAddr);
 778 }
 779
 780 /**/
 781 /* 表示位置（カーソル位置）読み込み */
 782 /**/
 783 /* 引数 : pnPosX = 横（桁）位置格納アドレス */
 784 /* : pnPosY = 縦（行）位置格納アドレス */
 785 /* : (st_nCurPosY)(st_nCurPosX) : 現在の表示位置 */
 786 /* 戻値 : なし　 */
 787
 788 void Get_DispPos(int* pnPosX, int* pnPosY)
 789 {
 790 /* 格納 */
 791 *pnPosX = st_nCurPosX;
 792 *pnPosY = st_nCurPosY;
 793 }
 794
 795 /**/
 796 /* 表示位置指定で文字列表示 */
 797 /**/
 798 /* 注意 : nPosX<0またはnPosY<0のときは現在の表示位置から表示。 */
 799 /* 引数 : nPosX = 横（桁）表示位置（0～COLUMN_SZ-1） */
 800 /* : nPosY = 縦（行）表示位置（0～LINE_SZ-1） */
 801 /* : pchStr = 表示文字列の先頭アドレス（0x00で終端する文字列） */
 802 /* 戻値 : Disp_String() == TRUE : 正常 */
 803 /* : == FALSE : 異常（書き込みバッファフル） */
 804 /* : (st_nCurPosY)(st_nCurPosX) : 新しい表示位置 */
 805
 806 BOOL Disp_String(int nPosX, int nPosY, const char* pchStr)
 807 {
 808 char chChar;
 809
 810 /* 表示位置指定有効のとき */
 811 if((nPosX >= 0) && (nPosY >= 0)){
 812 Set_DispPos(nPosX, nPosY);
 813 }
 814 /* １文字ずつ順に表示 */
 815 while((chChar = *(pchStr++)) != 0){
 816 if(Disp_Character(chChar) == FALSE){
 817 return FALSE;
 818 }
 819 }
 820
 821 return TRUE;
 822 }
 823
 824
 825 /**/
 826 /* 表示位置指定で文字列表示（文字数指定） */
 827 /**/
 828 /* 注意 : nPosX<0またはnPosY<0のときは現在の表示位置から表示。 */
 829 /* 引数 : nPosX = 横（桁）表示位置（0～COLUMN_SZ-1） */
 830 /* : nPosY = 縦（行）表示位置（0～LINE_SZ-1） */
 831 /* : nSize = 表示文字数（終端0x00があれば終端前まで表示） */
 832 /* : pchStr = 表示文字列の先頭アドレス */
 833 /* 戻値 : Disp_BlockChar() == TRUE : 正常 */
 834 /* : == FALSE : 異常（書き込みバッファフル） */
 835 /* : (st_nCurPosY)(st_nCurPosX) : 新しい表示位置 */
 836
 837 BOOL Disp_BlockChar(int nPosX, int nPosY, int nSize, const char* pchBlock)
 838 {
 839 char chChar;
 840
 841 /* 表示位置指定有効のとき */
 842 if((nPosX >= 0) && (nPosY >= 0)){
 843 Set_DispPos(nPosX, nPosY);
 844 }
 845 /* １文字ずつ順に表示 */

 846 while(nSize-- != 0){
 847 chChar = *(pchBlock++);
 848 if(chChar == 0x00) break;
 849 if(Disp_Character(chChar) == FALSE){
 850 return FALSE;
 851 }
 852 }
 853
 854 return TRUE;
 855 }
 856
 857 /**/
 858 /* 表示位置指定で指定数の空白を表示 */
 859 /**/
 860 /* 注意 : nPosX<0またはnPosY<0のときは現在の表示位置から表示。 */
 861 /* 引数 : nPosX = 横（桁）表示位置（0～COLUMN_SZ-1） */
 862 /* : nPosY = 縦（行）表示位置（0～LINE_SZ-1） */
 863 /* : nSpcSize = 空白数 */
 864 /* 戻値 : Disp_Space() == TRUE : 正常 */
 865 /* : == FALSE : 異常（書き込みバッファフル） */
 866 /* : ※LCDコントローラ内に次の新しい表示位置が保持される。 */
 867
 868 BOOL Disp_Space(int nPosX, int nPosY, int nSpcSize)
 869 {
 870 /* 表示位置指定有効のとき */
 871 if((nPosX >= 0) && (nPosY >= 0)){
 872 Set_DispPos(nPosX, nPosY);
 873 }
 874 /* １文字ずつ順に表示 */
 875 while(nSpcSize-- != 0){
 876 if(Disp_Character(' ') == FALSE){
 877 return FALSE;
 878 }
 879 }
 880
 881 return TRUE;
 882 }
 883
 884
 885 /* End of File */

