
 1 /**/
 2 /**/
 3 /*** ***/
 4 /*** コンペアマッチタイマCMT0～CMT3による周期割り込みの発生 ***/
 5 /*** ***/
 6 /*** by: S.Suzuki ***/
 7 /**/
 8 /**/
 9 /* 注意 : ・PCLK=20MHzであること。 */
 10 /* : ・RX220の64ピンパッケージであること。 */
 11
 12 #include <machine.h>
 13 #include "typedefine.h"
 14 #include "iodefine.h"
 15
 16
 17 #pragma section
 18 #pragma bit_order right
 19 /**/
 20 /* コンペアマッチタイマ初期化 */
 21 /**/
 22 /* 注意 : CMTのコンペアマッチ割り込みCMIはCMCNT=CMCOR（CMCORは0x0000になる） */
 23 /* : となった次のクロックで発生するため、CMCORで指定したカウント値より */
 24 /* : １カウント分多い時間になってしまう。従って、CMCORには希望のカウント */
 25 /* : 値―１の値を設定する。 */
 26 /* 注意 : コンペアマッチが発生するとカウンタCMCNTは0x0000になる。 */
 27
 28 #define CONST500U (1250) /* PCLK/8(=2.5MHz)時の500uS発生用コンスタント値 */
 29 #define CONST01M (2500) /* PCLK/8(=2.5MHz)時の 1mS発生用コンスタント値 */
 30 #define CONST10M (25000) /* PCLK/8(=2.5MHz)時の10mS発生用コンスタント値 */
 31 #define CONST50M (7812) /* PCLK/128(=156.25KHz)時の 50mS発生用コンスタント値 */
 32 #define CONST100M (15625) /* PCLK/128(=156.25KHz)時の100mS発生用コンスタント値 */
 33
 34 void Init_PeriodTimer(void)
 35 {
 36 /* 動作モード、消費電力低減機能、ソフトウェアリセット関連レジスタへの書き込みを許可する */
 37 SYSTEM.PRCR.WORD = 0xA502;
 38 /* CMT0,CMT1のモジュールストップ解除 */
 39 MSTP(CMT0) = 0; /* SYSTEM.MSTPCRA.BIT.MSTPA15 = 0;（CMT0～CMT1共通） */
 40 /* CMT2,CMT3のモジュールストップ解除 */
 41 MSTP(CMT2) = 0; /* SYSTEM.MSTPCRA.BIT.MSTPA14 = 0;（CMT2～CMT3共通） */
 42 /* 動作モード、消費電力低減機能、ソフトウェアリセット関連レジスタへの書き込みを禁止する */
 43 SYSTEM.PRCR.WORD = 0xA500;
 44
 45 /* コンペアマッチタイマCMT0,CMT1,CMT2,CMT3停止 */
 46 CMT.CMSTR0.WORD = 0x0000;
 47 CMT.CMSTR1.WORD = 0x0000;
 48
 49 /* コンペアマッチタイマCMT0初期化 */
 50 CMT0.CMCR.WORD = 0x0040; /* クロック選択(PCLK/8→2.5MHz) ,コンペアマッチ割り込み（CMI0）
 を許可 */
 51 CMT0.CMCNT = 0x0000; /* コンペアマッチタイマカウンタクリア */
 52 CMT0.CMCOR = CONST01M-1; /* コンペアマッチタイマコンスタントレジスタセット(1mS) */
 53 /* コンペアマッチタイマCMT1初期化 */
 54 CMT1.CMCR.WORD = 0x0040; /* クロック選択(PCLK/8→2.5MHz) ,コンペアマッチ割り込み（CMI1）
 を許可 */
 55 CMT1.CMCNT = 0x0000; /* コンペアマッチタイマカウンタクリア */
 56 CMT1.CMCOR = CONST10M-1; /* コンペアマッチタイマコンスタントレジスタセット(10mS) */
 57 /* コンペアマッチタイマCMT2初期化 */
 58 CMT2.CMCR.WORD = 0x0042; /* クロック選択(PCLK/128→156.25KHz) ,コンペアマッチ割り込み（C
 MI2）を許可 */
 59 CMT2.CMCNT = 0x0000; /* コンペアマッチタイマカウンタクリア */
 60 CMT2.CMCOR = CONST50M-1; /* コンペアマッチタイマコンスタントレジスタセット(50mS) */
 61 /* コンペアマッチタイマCMT3初期化 */
 62 CMT3.CMCR.WORD = 0x0042; /* クロック選択(PCLK/128→156.25KHz) ,コンペアマッチ割り込み（C
 MI3）を許可 */
 63 CMT3.CMCNT = CONST100M/3; /* コンペアマッチタイマカウンタセット（CMT2と同期しないよう初期
 値をずらす） */
 64 CMT3.CMCOR = CONST100M-1; /* コンペアマッチタイマコンスタントレジスタセット(100mS) */
 65
 66 /* 割り込み優先順位セット */
 67 IPR(CMT0,) = 6;
 68 IPR(CMT1,) = 6;
 69 IPR(CMT2,) = 6;
 70 IPR(CMT3,) = 6;
 71 /* 割り込み要求ステータスフラグクリア */
 72 IR(CMT0, CMI0) = 0;
 73 IR(CMT1, CMI1) = 0;

 74 IR(CMT2, CMI2) = 0;
 75 IR(CMT3, CMI3) = 0;
 76 /* コンペアマッチ割り込み許可 */
 77 IEN(CMT0, CMI0) = 1;
 78 IEN(CMT1, CMI1) = 1;
 79 IEN(CMT2, CMI2) = 1;
 80 IEN(CMT3, CMI3) = 1;
 81
 82 /* コンペアマッチタイマCMT0,CMT1をスタート */
 83 CMT.CMSTR0.WORD = 0x0003;
 84 /* コンペアマッチタイマCMT2,CMT3をスタート */
 85 CMT.CMSTR1.WORD = 0x0003;
 86 }
 87
 88
 89 /**/
 90 /* CMT0コンペアマッチ割り込み(CMI0)の処理 */
 91 /**/
 92 /* ※1mS周期 */
 93 /* ※CMInはエッジ検知割り込みのため、IRフラグは自動的にクリアされる。 */
 94
 95 #pragma interrupt (Int_CMT0_CMI0)
 96 void Int_CMT0_CMI0(void)
 97 {
 98 /* ここに1mS周期で実行する処理を記述 */
 99
 100 }
 101
 102
 103 /**/
 104 /* CMT1コンペアマッチ割り込み(CMI1)の処理 */
 105 /**/
 106 /* ※10mS周期 */
 107 /* ※CMInはエッジ検知割り込みのため、IRフラグは自動的にクリアされる。 */
 108
 109 #pragma interrupt (Int_CMT1_CMI1)
 110 void Int_CMT1_CMI1(void)
 111 {
 112 /* ここに10mS周期で実行する処理を記述 */
 113
 114 }
 115
 116 /**/
 117 /* CMT2コンペアマッチ割り込み(CMI2)の処理 */
 118 /**/
 119 /* ※50mS周期 */
 120 /* ※CMInはエッジ検知割り込みのため、IRフラグは自動的にクリアされる。 */
 121
 122 #pragma interrupt (Int_CMT2_CMI2)
 123 void Int_CMT2_CMI2(void)
 124 {
 125 /* ここに50mS周期で実行する処理を記述 */
 126
 127 }
 128
 129 /**/
 130 /* CMT3コンペアマッチ割り込み(CMI3)の処理 */
 131 /**/
 132 /* ※100mS周期 → 分周して１秒周期を作成 */
 133 /* ※CMInはエッジ検知割り込みのため、IRフラグは自動的にクリアされる。 */
 134 static int st_nDivSecCnt;
 135
 136 #pragma interrupt (Int_CMT3_CMI3)
 137 void Int_CMT3_CMI3(void)
 138 {
 139 /* ここに100mS周期で実行する処理を記述 */
 140
 141 st_nDivSecCnt++;
 142 if(10 <= st_nDivSecCnt){
 143 st_nDivSecCnt = 0;
 144 /* ここに1sec周期で実行する処理を記述 */
 145
 146 }
 147 }
 148
 149 /* End of File */

