
// RIIC0_Master.c
/**/
/**/
/*** ***/
/*** IICバス(RIIC0:Inter-IC-Bus)通信制御 ***/
/*** ***/
/**/
/**/

#include <machine.h>
#include "typedefine.h"
#include "iodefine.h"

#include "RIIC0_Master.h"

#pragma section
#pragma bit_order right
/**/

/* RIIC_ICSR2はRIICのICSR2と同じビット構成のフラグ（Int_RIIC0_ICEEI0で使用） */
typedef union {
 BYTE BYTE;
 struct {
 BYTE TMOF:1; /* b0:TMOF */
 BYTE AL:1; /* b1:AL */
 BYTE START:1; /* b2:START */
 BYTE STOP:1; /* b3:STOP */
 BYTE NACKF:1; /* b4:NACKF */
 BYTE RDRF:1; /* b5:RDRF */
 BYTE TEND:1; /* b6:TEND */
 BYTE TDRE:1; /* b7:TDRE */
 } BIT;
} RIIC_ICSR2;
/* RIIC_STATは通信状態を示すステータスフラグ（iic0_stat用） */
typedef union {
 BYTE Byte;
 struct {
 BYTE MODE_WR:1; /* b0:書き込みモード */
 BYTE MODE_RD:1; /* b1:読み込みモード */
 BYTE ERROR:1; /* b2:異常発生 */
 BYTE NACK:1; /* b3:NACK受信 */
 BYTE STOP:1; /* b4:STOPシーケンス検知 */
 BYTE START:1; /* b5:STARTシーケンス検知（リスタート） */
 BYTE B6:1; /* b6: */
 BYTE END:1; /* b7:シーケンス終了 */
 } BIT;
} RIIC_STAT;

static const BYTE* s_pSndDataPtr1;
static const BYTE* s_pSndDataPtr2;
static BYTE* s_pRcvBuffPtr;
static WORD s_wSndSize1;
static WORD s_wSndSize2;
static WORD s_wRcvSize;
static WORD s_wSndCount;
static WORD s_wRcvCount;
static BYTE s_bySlaveID;

static volatile RIIC_STAT iic0_stat;

/***/
/* RIIC0：タイマー割り込み処理 */
/***/
/* ※10mS周期（MCLK0単位）割り込みで呼ぶこと。 */
static volatile WORD wTmrEndWait;
static volatile WORD wTmrBusyWait;

void Timer10mS_riic0(void)
{
 if(wTmrEndWait != 0)
 --wTmrEndWait;
 if(wTmrBusyWait != 0)
 --wTmrBusyWait;
}

/**/
/* IICインタフェースの初期化(RIIC0) */
/**/

void Init_RIIC0(void)
{
 /* ポート１の設定 */
 PORT1.DDR.BIT.B2 = 0; /* b2:入力ポートに設定(SCL0) */
 PORT1.ICR.BIT.B2 = 1; /* b2:入力バッファ有効(SCL0) */
 PORT1.DDR.BIT.B3 = 0; /* b3:入力ポートに設定(SDA0) */

 PORT1.ICR.BIT.B3 = 1; /* b3:入力バッファ有効(SDA0) */

 /* RIIC0のモジュールストップ解除 */
 MSTP(RIIC0) = 0; /* SYSTEM.MSTPCRB.BIT.MSTPB21 = 0; */
 /* チャンネル０（RIIC0） */
 RIIC0.ICCR1.BIT.ICE = 0; /* RIICは機能停止 */
 RIIC0.ICCR1.BIT.IICRST = 1; /* RIIC/内部リセット */
 RIIC0.ICCR1.BIT.IICRST = 0; /* RIIC/内部リセット解除 */
 RIIC0.ICSER.BYTE = 0x00;

#if IIC0_SPEED == IIC0_400kbps // 実測で328kHz
 RIIC0.ICMR1.BYTE = 0x28; /* BC=0(9bit),BCWP=1,CKS=2(PCLK/4),MTWP=0 */
 RIIC0.ICBRH.BYTE = 0xE7; /* BRH=7:ビットレートHigh幅（=400kbps,マスタモード用） */
 RIIC0.ICBRL.BYTE = 0xF0; /* BRL=16ビットレートLow幅 （=400kbps） */
#else // 100kbpsモード // 実測で96kHz
 RIIC0.ICMR1.BYTE = 0x38; /* CKS=3:PCLK/8 */
 RIIC0.ICBRH.BYTE = 0xF8; /* BRH=24 */
 RIIC0.ICBRL.BYTE = 0xFD; /* BRL=29 */
#endif
 RIIC0.ICMR2.BYTE = 0x06; /* TMOS=0,TMOL=1,TMOH=1,SDDL=0,DLCS=0 */
 RIIC0.ICMR3.BYTE = 0x10; /* NF=0,ACKBR=0,ACKBT=0,ACKWP=1,RDRFS=0,WAIT=0,SMBS=0 */
 RIIC0.ICFER.BYTE = 0x72; /* TMOE=0,MALE=1,NALE=0,SALE=0,NACKE=1,NFE=1,SCLE=1,FMPE=0 */
 RIIC0.ICIER.BYTE = 0xB8; /* TMOIE=0,ALIE=0,STIE=0,SPIE=1,NAKIE=1,RIE=1,TEIE=0,TIE=1 */

 /* 割り込み優先順位セット */
 IPR(RIIC0, ICEEI0) = 3;
 IPR(RIIC0, ICRXI0) = 3;
 IPR(RIIC0, ICTXI0) = 3;
 IPR(RIIC0, ICTEI0) = 3;
 /* 割り込み要求ステータスフラグクリア */
 IR(RIIC0, ICEEI0) = 0;
 IR(RIIC0, ICRXI0) = 0;
 IR(RIIC0, ICTXI0) = 0;
 IR(RIIC0, ICTEI0) = 0;
 /* 全割り込み許可 */
 IEN(RIIC0, ICEEI0) = 1; /* 通信エラー/イベント発生（レベル） */
 IEN(RIIC0, ICRXI0) = 1; /* 受信データフル （エッジ） */
 IEN(RIIC0, ICTXI0) = 1; /* 送信データエンプティ （エッジ） */
 IEN(RIIC0, ICTEI0) = 1; /* 送信終了 （レベル） */

 /* 作業用変数を初期化 */
 s_wSndSize1 = 0;
 s_wSndSize2 = 0;
 s_wRcvSize = 0;
 s_wSndCount = 0;
 s_wRcvCount = 0;
 s_bySlaveID = 0;
 iic0_stat.Byte = 0;

 /* RIIC0の動作許可 */
 RIIC0.ICCR1.BIT.ICE = 1;
}

/**/
/* 受信／イベント発生割り込み処理(RIIC0) */
/**/

/* 通信エラー/イベント発生割り込み(RIIC0) ************************************/

#pragma interrupt (Int_RIIC0_ICEEI0(enable))
void Int_RIIC0_ICEEI0(void)
{
 RIIC_ICSR2 sICSR2;

 /* I2Cバスステータスレジスタ2読み込み */
 sICSR2.BYTE = RIIC0.ICSR2.BYTE;
 /* TMOF,AL,START,STOP,NACKFフラグをクリア */
 RIIC0.ICSR2.BYTE = 0xE0;
 /* 割り込み許可ビットのみ抽出 */
 sICSR2.BYTE = (BYTE)(sICSR2.BYTE & RIIC0.ICIER.BYTE);

 /* スタートコンディション検出（＝リスタートコンディション検出） */
 if(sICSR2.BIT.START == 1){
 /* スタートコンディション検出禁止 */
 RIIC0.ICIER.BIT.STIE = 0;
 /* 読み込みモード指定(R/W=1)でスレーブアドレス送信 */
 RIIC0.ICDRT = (BYTE)(s_bySlaveID | 0x01);
 /* IICステータスセット */
 iic0_stat.BIT.START = 1;
 }

 /* ストップコンディション検出 */
 if(sICSR2.BIT.STOP == 1){
 /* ストップコンディション検出以外の割り込み禁止 */
 /* TIE（送信データエンプティ）、RIE（受信データフル）、NAKIE（NACK受信）、SPIE（ストップコンディション検出）
割り込み許可 */
 RIIC0.ICIER.BYTE = 0xB8;

 /* 書き込みモードで送信未完了があれば異常とする */
 if(iic0_stat.BIT.MODE_WR != 0){
 if((s_wSndSize1 != 0) || (s_wSndSize2 != 0)){
 iic0_stat.BIT.ERROR = 1;
 }
 }
 /* 読み込みモードで受信途中があれば異常とする */
 else if(iic0_stat.BIT.MODE_RD != 0){
 if(s_wRcvSize != 0){
 iic0_stat.BIT.ERROR = 1;
 }
 }
 /* IICステータスセット */
 iic0_stat.BIT.STOP = 1;
 iic0_stat.BIT.END = 1;
 }

 /* NACK検出フラグ（送信モードで動作） */
 if(sICSR2.BIT.NACKF == 1){
 /* NACK受信割り込み禁止 */
 RIIC0.ICIER.BIT.NAKIE = 0;
 /* ストップコンディション発行 */
 RIIC0.ICSR2.BIT.STOP = 0;
 RIIC0.ICCR2.BIT.SP = 1;
 /* IICステータスセット */
 iic0_stat.BIT.NACK = 1;
 iic0_stat.BIT.END = 1;
 }

 /* タイムアウト検出（未使用） */
 if(sICSR2.BIT.TMOF == 1){
 /* タイムアウト検出禁止 */
 RIIC0.ICIER.BIT.TMOIE = 0;
 }

 /* アービトレーションロスト発生（未使用） */
 if(sICSR2.BIT.AL == 1){
 /* アービトレーションロスト検出禁止 */
 RIIC0.ICIER.BIT.ALIE = 0;
 }
}

/* 受信データフル割り込み(RIIC0) **/

#pragma interrupt (Int_RIIC0_ICRXI0(enable))
void Int_RIIC0_ICRXI0(void)
{
 /* 受信数をカウント */
 s_wRcvCount++;
 /* 最初の受信は特殊な処理 */
 if(s_wRcvCount == 1){
 /* １バイトのみの場合 */
 if(s_wRcvSize == 1){
 /* WAITありを設定 */
 RIIC0.ICMR3.BIT.WAIT = 1;
 /* NAK送信を設定 */
 RIIC0.ICMR3.BIT.ACKBT = 1;
 }
 /* ダミーリード */
 RIIC0.ICDRR;
 }
 /* 最終－１番目の受信 */
 else if(s_wRcvSize == 2){
 /* WAITありを設定 */
 RIIC0.ICMR3.BIT.WAIT = 1;
 /* NAK送信を設定 */
 RIIC0.ICMR3.BIT.ACKBT = 1;
 /* 受信データ格納 */
 *(s_pRcvBuffPtr++) = RIIC0.ICDRR;
 s_wRcvSize--;
 }
 /* 最終の受信 */
 else if(s_wRcvSize == 1){
 /* ストップコンディション発行 */
 RIIC0.ICSR2.BIT.STOP = 0;
 RIIC0.ICCR2.BIT.SP = 1;
 /* 次回のためACKビットをセット */
 RIIC0.ICMR3.BIT.ACKBT = 0;
 /* 受信データ格納 */
 *(s_pRcvBuffPtr++) = RIIC0.ICDRR;
 s_wRcvSize--;
 /* 次回のためWAITなしを設定 */
 RIIC0.ICMR3.BIT.WAIT = 0;
 }
 /* 上記以外で受信データ格納 */
 else{
 /* 受信データ格納 */

 *(s_pRcvBuffPtr++) = RIIC0.ICDRR;
 s_wRcvSize--;
 }
}

/* 送信データエンプティ割り込み(RIIC0) **************************************/

#pragma interrupt (Int_RIIC0_ICTXI0(enable))
void Int_RIIC0_ICTXI0(void)
{
 /* 送信数をカウント */
 s_wSndCount++;
 /* 最初にスレーブアドレスを送信 */
 if(s_wSndCount == 1){
 /* 書き込みモード指定(R/W=0)でスレーブアドレス送信 */
 RIIC0.ICDRT = (BYTE)(s_bySlaveID & 0xFE);
 return;
 }
 /* 書き込みモードの場合 */
 if(iic0_stat.BIT.MODE_WR != 0){
 /* １ブロック目の送信データがある場合 */
 if(s_wSndSize1 != 0){
 /* データ送信 */
 RIIC0.ICDRT = *(s_pSndDataPtr1++);
 s_wSndSize1--;
 }
 /* ２ブロック目の送信データがある場合 */
 else if(s_wSndSize2 != 0){
 /* データ送信 */
 RIIC0.ICDRT = *(s_pSndDataPtr2++);
 s_wSndSize2--;
 }
 /* すべての送信データを送信した場合 */
 else{
 /* 送信終了割り込み許可 */
 RIIC0.ICIER.BIT.TEIE = 1;
 }
 }
 /* 読み込みモードの場合 */
 else if(iic0_stat.BIT.MODE_RD != 0){
 /* １ブロック目の送信データがある場合 */
 if(s_wSndSize1 != 0){
 /* データ送信 */
 RIIC0.ICDRT = *(s_pSndDataPtr1++);
 s_wSndSize1--;
 }
 /* すべての送信データを送信した場合 */
 else{
 /* 送信終了割り込み許可 */
 RIIC0.ICIER.BIT.TEIE = 1;
 }
 }
 /* 書き込みでも読み込みでもない場合 */
 else{
 /* ストップコンディション発行 */
 RIIC0.ICSR2.BIT.STOP = 0;
 RIIC0.ICCR2.BIT.SP = 1;
 /* IICステータスセット */
 iic0_stat.BIT.ERROR = 1;
 }
}

/* 送信終了割り込み(RIIC0) **/
/* ※シフトレジスタ(ICDRS)から送信が完了したことを示す。 */

#pragma interrupt (Int_RIIC0_ICTEI0(enable))
void Int_RIIC0_ICTEI0(void)
{
 /* 送信終了フラグをクリア */
 RIIC0.ICSR2.BIT.TEND = 0;

 /* 書き込みモードの場合 */
 if(iic0_stat.BIT.MODE_WR != 0){
 /* ストップコンディション発行 */
 RIIC0.ICSR2.BIT.STOP = 0;
 RIIC0.ICCR2.BIT.SP = 1;
 }
 /* 読み込みモードの場合 */
 else if(iic0_stat.BIT.MODE_RD != 0){
 /* スタートコンディション検出割り込み許可 */
 RIIC0.ICIER.BIT.STIE = 1;
 /* リスタートコンディション発行 */
 RIIC0.ICSR2.BIT.START = 0;
 RIIC0.ICCR2.BIT.RS = 1;
 }
 /* 書き込みでも読み込みでもない場合 */
 else{

 /* ストップコンディション発行 */
 RIIC0.ICSR2.BIT.STOP = 0;
 RIIC0.ICCR2.BIT.SP = 1;
 /* IICステータスセット */
 iic0_stat.BIT.ERROR = 1;
 }
 /* 送信終了割り込み禁止 */
 RIIC0.ICIER.BIT.TEIE = 0;

}

/**/
/* RIIC通信スタート */
/**/

static BOOL Start_RIIC0(void)
{
 /* バスの開放を100mSまで待つ */
 wTmrBusyWait = 10;
 while(RIIC0.ICCR2.BIT.BBSY != 0){ /*BUSYなら待つ */
 if(wTmrBusyWait == 0){
 return FALSE;
 }
 }

 /* IICステータス初期化 */
 iic0_stat.Byte = 0x00;
 if(s_wRcvSize == 0){
 iic0_stat.BIT.MODE_WR = 1;
 }
 else{
 iic0_stat.BIT.MODE_RD = 1;
 }
 /* 送信・受信カウンタをクリア */
 s_wSndCount = 0;
 s_wRcvCount = 0;
 /* スタートコンディション発行 */
 RIIC0.ICSR2.BIT.START = 0;
 RIIC0.ICCR2.BIT.ST = 1;

 return TRUE;
}

static void Stop_RIIC0(void)
{
 /* IICステータス初期化 */
 iic0_stat.Byte = 0;
 /* ストップコンディション発行 */
 RIIC0.ICSR2.BIT.STOP = 0;
 RIIC0.ICCR2.BIT.SP = 1;
}

static void Reset_RIIC0(void)
{
 /* ICMR1.BC[2:0]ビット、ICSR1、ICSR2、ICDRSレジスタおよび内部状態をリセット */
 RIIC0.ICCR1.BIT.IICRST = 1;
 RIIC0.ICCR1.BIT.IICRST = 0;
 /* I2Cバスモードレジスタ1を再セット */
#if IIC0_SPEED == IIC0_400kbps
 RIIC0.ICMR1.BYTE = 0x28; /* 基準クロック：PCLK/4、ビットカウンタ：９ビット */
 RIIC0.ICBRH.BYTE = 0xE7;
 RIIC0.ICBRL.BYTE = 0xF0;
#else // 100kbpsモード
 RIIC0.ICMR1.BYTE = 0x38; /* 基準クロック：PCLK/8、ビットカウンタ：９ビット */
 RIIC0.ICBRH.BYTE = 0xF8;
 RIIC0.ICBRL.BYTE = 0xFD;
#endif
 RIIC0.ICCR2.BYTE = 0x00;
}

/**/
/* スレーブアドレスの設定 */
/**/
/* IN : bySlaveAddr = 相手のスレーブアドレス */
/* OUT : なし */

void SetSlaveAddr_RIIC0(BYTE bySlaveAddr)
{
 /* （相手）スレーブアドレス保存 */
 s_bySlaveID = bySlaveAddr;
}

/**/
/* 送信してレスポンスを受信する */
/**/

/* スレーブアドレスはあらかじめ設定しておき、１バイト目に送信される。 */
/* 【読み／書きモードとリスタートコンディションの有無】 */
/* .wSndDataSz?|.wRcvDataSz | */
/* ------------|------------|----------------|------------------------------ */
/* == 0 | == 0 | 書き込みのみ | リスタートコンディションなし */
/* == 0 | != 0 | 読み込みのみ | リスタートコンディションなし */
/* != 0 | == 0 | 書き込みのみ | リスタートコンディションなし */
/* != 0 | != 0 | 書き→読み込み | リスタートコンディションあり */

int TranceiveData_RIIC0(RIIC_TXRX* TxRxParam)
{
 /* 送信パラメータセット */
 s_pSndDataPtr1 = TxRxParam->pSndData1;
 s_wSndSize1 = TxRxParam->wSndDataSz1;
 s_pSndDataPtr2 = TxRxParam->pSndData2;
 s_wSndSize2 = TxRxParam->wSndDataSz2;
 /* 受信パラメータセット */
 s_pRcvBuffPtr = TxRxParam->pRcvBuff;
 s_wRcvSize = TxRxParam->wRcvDataSz;

 /* RIIC通信スタート */
 if(Start_RIIC0() == FALSE){ /* バスが空かない（BUSY状態） */
 return RIIC0_ERR_BUSY;
 }

 /* 通信終了を100mSまで待つ */
 wTmrEndWait = 10;
 while(iic0_stat.BIT.END == 0){
 if(wTmrEndWait == 0){
 /* RIIC通信ストップ */
 Stop_RIIC0();
 /* RIICリセット */
 Reset_RIIC0();
 return RIIC0_ERR_TMOUT;
 }
 }
 if(iic0_stat.BIT.NACK != 0){
 return RIIC0_ERR_NACK;
 }
 if(iic0_stat.BIT.ERROR != 0){
 return RIIC0_ERR_OTHER;
 }

 return RIIC0_ERR_OK;
}

/**/
/**/
/*** ***/
/*** IICデバイス通信支援関数 ***/
/*** ***/
/**/
/**/
/* 注意 : TRYMAX_IICはEEPROMの書き込み中(=BUSY)を待つ時間をつくるリトライ数。 */
/* : その時間(Write Cycle Time)はEEPROMによって異なるが、一律に10mSとみ */
/* : なしている。また、余裕を持って２倍程度(20mS)の値になっている。 */
/* : EEPROM以外のデバイスには関係ないが、簡略化のため共通に作用する。 */
#if IIC0_SPEED == IIC0_100kbps
#define TRYMAX_IIC (60) /* 100Kbpsのとき */
#else
#define TRYMAX_IIC (230) /* 400Kbpsのとき */
#endif

/**/
/* １バイトデータリード */
/**/
/* １バイトのアドレス指定（RTC用） **/

BOOL ReadByte_A8_IIC(BYTE byRdAddr, BYTE *pRxBuff)
{
 RIIC_TXRX RIICParam;
 int nTryCntr;

 /* 送受信パラメータセット */
 RIICParam.wSndDataSz1 = 1;
 RIICParam.pSndData1 = (const BYTE*)&byRdAddr;
 RIICParam.wSndDataSz2 = 0;
 RIICParam.pSndData2 = NULL;
 RIICParam.wRcvDataSz = 1;
 RIICParam.pRcvBuff = pRxBuff;

 nTryCntr = 0;
 do{
 if(TranceiveData_RIIC0(&RIICParam) == RIIC0_ERR_OK){
 return TRUE;

 }
 }while(++nTryCntr < TRYMAX_IIC);

 return FALSE;
}

/* ２バイトのアドレス指定（EEPROM用） ***/

BOOL ReadByte_A16_IIC(WORD wRdAddr, BYTE *pRxBuff)
{
 RIIC_TXRX RIICParam;
 int nTryCntr;
 BYTE abyTxBuff[2];

 /* 16bitアドレスを8bitずつにする */
 abyTxBuff[0] = (BYTE)(wRdAddr >> 8);
 abyTxBuff[1] = (BYTE)wRdAddr;

 /* 送受信パラメータセット */
 RIICParam.wSndDataSz1 = 2;
 RIICParam.pSndData1 = (const BYTE*)abyTxBuff;
 RIICParam.wSndDataSz2 = 0;
 RIICParam.pSndData2 = NULL;
 RIICParam.wRcvDataSz = 1;
 RIICParam.pRcvBuff = pRxBuff;

 /* 読み込みシーケンス */
 nTryCntr = 0;
 do{
 if(TranceiveData_RIIC0(&RIICParam) == RIIC0_ERR_OK){
 return TRUE;
 }
 }while(++nTryCntr < TRYMAX_IIC);

 return FALSE;
}

/**/
/* ページデータリード */
/**/
/* １バイトのアドレス指定（RTC用） **/

BOOL ReadPage_A8_IIC(BYTE byRdAddr, WORD wSize, BYTE *pRxBuff)
{
 RIIC_TXRX RIICParam;
 int nTryCntr;

 /* 送受信パラメータセット */
 RIICParam.wSndDataSz1 = 1;
 RIICParam.pSndData1 = (const BYTE*)&byRdAddr;
 RIICParam.wSndDataSz2 = 0;
 RIICParam.pSndData2 = NULL;
 RIICParam.wRcvDataSz = wSize;
 RIICParam.pRcvBuff = pRxBuff;

 nTryCntr = 0;
 do{
 if(TranceiveData_RIIC0(&RIICParam) == RIIC0_ERR_OK){
 return TRUE;
 }
 }while(++nTryCntr < TRYMAX_IIC);

 return FALSE;
}

/* ２バイトのアドレス指定（EEPROM用） ***/

BOOL ReadPage_A16_IIC(WORD wRdAddr, WORD wSize, BYTE *pRxBuff)
{
 RIIC_TXRX RIICParam;
 int nTryCntr;
 BYTE abyTxBuff[2];

 /* 16bitアドレスを8bitずつにする */
 abyTxBuff[0] = (BYTE)(wRdAddr >> 8);
 abyTxBuff[1] = (BYTE)wRdAddr;

 /* 送受信パラメータセット */
 RIICParam.wSndDataSz1 = 2;
 RIICParam.pSndData1 = (const BYTE*)abyTxBuff;
 RIICParam.wSndDataSz2 = 0;
 RIICParam.pSndData2 = NULL;
 RIICParam.wRcvDataSz = wSize;
 RIICParam.pRcvBuff = pRxBuff;

 /* 読み込みシーケンス */
 nTryCntr = 0;

 do{
 if(TranceiveData_RIIC0(&RIICParam) == RIIC0_ERR_OK){
 return TRUE;
 }
 }while(++nTryCntr < TRYMAX_IIC);

 return FALSE;
}

/**/
/* １バイトデータライト */
/**/
/* １バイトのアドレス指定（RTC用） **/

BOOL WriteByte_A8_IIC(BYTE byWrAddr, const BYTE *pTxData)
{
 RIIC_TXRX RIICParam;
 int nTryCntr;

 /* 送受信パラメータセット */
 RIICParam.wSndDataSz1 = 1;
 RIICParam.pSndData1 = (const BYTE*)&byWrAddr;
 RIICParam.wSndDataSz2 = 1;
 RIICParam.pSndData2 = pTxData;
 RIICParam.wRcvDataSz = 0;
 RIICParam.pRcvBuff = NULL;

 nTryCntr = 0;
 do{
 if(TranceiveData_RIIC0(&RIICParam) == RIIC0_ERR_OK){
 return TRUE;
 }
 }while(++nTryCntr < TRYMAX_IIC);

 return FALSE;
}

/* ２バイトのアドレス指定（EEPROM用） ***/

BOOL WriteByte_A16_IIC(WORD wWrAddr, const BYTE *pTxData)
{
 RIIC_TXRX RIICParam;
 int nTryCntr;
 BYTE abyTxBuff[2];

 /* 16bitアドレスを8bitずつにする */
 abyTxBuff[0] = (BYTE)(wWrAddr >> 8);
 abyTxBuff[1] = (BYTE)wWrAddr;

 /* 送受信パラメータセット */
 RIICParam.wSndDataSz1 = 2;
 RIICParam.pSndData1 = (const BYTE*)abyTxBuff;
 RIICParam.wSndDataSz2 = 1;
 RIICParam.pSndData2 = pTxData;
 RIICParam.wRcvDataSz = 0;
 RIICParam.pRcvBuff = NULL;

 /* 書き込みシーケンス開始 */
 nTryCntr = 0;
 do{
 if(TranceiveData_RIIC0(&RIICParam) == RIIC0_ERR_OK){
 return TRUE;
 }
 }while(++nTryCntr < TRYMAX_IIC);

 return FALSE;
}

/**/
/* ページデータライト */
/**/
/* １バイトのアドレス指定（RTC用） **/

BOOL WritePage_A8_IIC(BYTE byWrAddr, WORD wSize, const BYTE *pTxData)
{
 RIIC_TXRX RIICParam;
 int nTryCntr;

 /* 送受信パラメータセット */
 RIICParam.wSndDataSz1 = 1;
 RIICParam.pSndData1 = (const BYTE*)&byWrAddr;
 RIICParam.wSndDataSz2 = wSize;
 RIICParam.pSndData2 = pTxData;
 RIICParam.wRcvDataSz = 0;
 RIICParam.pRcvBuff = NULL;

 nTryCntr = 0;
 do{
 if(TranceiveData_RIIC0(&RIICParam) == RIIC0_ERR_OK){
 return TRUE;
 }
 }while(++nTryCntr < TRYMAX_IIC);

 return FALSE;
}

/* ２バイトのアドレス指定（EEPROM用） ***/

BOOL WritePage_A16_IIC(WORD wWrAddr, WORD wSize, const BYTE *pTxData)
{
 RIIC_TXRX RIICParam;
 int nTryCntr;
 BYTE abyTxBuff[2];

 /* 16bitアドレスを8bitずつにする */
 abyTxBuff[0] = (BYTE)(wWrAddr >> 8);
 abyTxBuff[1] = (BYTE)wWrAddr;
 /* 送受信パラメータセット */
 RIICParam.wSndDataSz1 = 2;
 RIICParam.pSndData1 = (const BYTE*)abyTxBuff;
 RIICParam.wSndDataSz2 = wSize;
 RIICParam.pSndData2 = pTxData;
 RIICParam.wRcvDataSz = 0;
 RIICParam.pRcvBuff = NULL;

 /* 書き込みシーケンス開始 */
 nTryCntr = 0;
 do{
 if(TranceiveData_RIIC0(&RIICParam) == RIIC0_ERR_OK){
 return TRUE;
 }
 }while(++nTryCntr < TRYMAX_IIC);

 return FALSE;
}

/* End of File */

