
// RSPI1_Mode3.c
/**/
/**/
/*** ***/
/*** シリアルペリフェラルインタフェースRSPI1 ***/
/*** ***/
/**/
/**/
/* 注意 : (1)PCLK=48MHzであること。 */
/* : (2)半二重通信専用（送信中に受信したデータは破棄する）。 */

#include <machine.h>
#include <stdlib.h>
#include "typedefine.h"
#include "iodefine.h"
#include "RSPI1_Mode3.h"

#pragma section
#pragma bit_order right
/**/

static volatile BYTE st_byRecvComple; /* 送受信完了フラグ（正常時のみ） */
static volatile BYTE st_byRSPI1_OVRF; /* ステータスレジスタSPSRのOVRFビット（異常時） */

static DWORD st_dwSendPtr; /* 送信済みバイト数 （ダミー含む） */
static DWORD st_dwSendSize; /* 送信データバイト数（正味の送信データ、ダミー含まず） */
static BYTE* st_pSendBuff; /* 送信データアドレス */
static DWORD st_dwRecvPtr; /* 受信済みバイト数 （送信中の受信含む） */
static DWORD st_dwRecvPtrR; /* 〃 〃 （正味の受信データ） */
static DWORD st_dwRecvSize; /* 受信データバイト数（正味の受信データ、送信中データ含まず） */
static BYTE* st_pRecvBuff; /* 受信データアドレス */
static DWORD st_dwTrcvSize; /* 送信＋受信バイト数 */

/***/
/* RSPI1：タイマー割り込み処理 */
/***/
/* ※10mS周期割り込みで呼ぶこと。 */
static volatile WORD wTmrTxRxWait;

void Timer10mS_spi1(void)
{
 if(wTmrTxRxWait != 0)
 --wTmrTxRxWait;
}

/**/
/* SPIインタフェース(RSPI1)初期化 */
/**/

static void Init_RSPI1(void)
{
 /* RSPI1のモジュールストップ解除 */
 MSTP(RSPI1) = 0; /* SYSTEM.MSTPCRB.BIT.MSTPB16 = 0; */
 /* RSPI1の動作停止 */
 RSPI1.SPCR.BYTE = 0; /* SPCR.SPE=0で動作停止 */
 /* RSPI1の初期化 */
 RSPI1.SPPCR.BYTE = 0x00; /* SPLP=0,SPLP2=0,SPOM=0,MOIFV=1,MOIFE=1 */
 RSPI1.SPBR.BYTE = 2; /* RSPIビットレートレジスタ(=n) （SPCMDn.BRDV=0で 8.00Mbps） */
// RSPI1.SPBR.BYTE = 3; /* RSPIビットレートレジスタ(=n) （SPCMDn.BRDV=0で 6.00Mbps） */
 /* ビットレート= PCLK/(2x(n+1)x2^N) N=SPCMDn.BRDV */

 RSPI1.SPDCR.BYTE = 0x00; /* SPFC=0,SLSEL=0,SPRDTD=0,SPLW=0 */

 RSPI1.SPCKD.BYTE = 0x00; /* SCKDL=0 */

 RSPI1.SSLND.BYTE = 0x00; /* SLNDL=0 */

 RSPI1.SPND.BYTE = 0x00; /* SPNDL=0 */

 RSPI1.SPCR2.BYTE = 0x00; /* SPPE=0,SPOE=0,SPIIE=0,PTE=0 */

 RSPI1.SSLP.BYTE = 0x00; /* SSL0P=0,SSL1P=0,SSL2P=0,SSL3P=0 */

 RSPI1.SPSR.BYTE = 0xA0; /* OVRF=0,IDLNF=0,MODF=0,PERF=0,SPTEF=1,SPRF=1 */

 RSPI1.SPSCR.BYTE = 0x00; /* SPSLN=0:シーケンス長1（0→0→…） */

// RSPI1.SPSSR.BYTE = 0x00; /* SPCP=0,SPECM=0 */

 RSPI1.SPCMD0.WORD = 0xE783; /* RSPIコマンドレジスタ0（モード３，データ長８，MSBファースト，バースト転送，
SSL0選択） */
 /* CPHA=1,CPOL=1,BRDV=0,SSLA=0,SSLKP=1,SPB=7,LSBF=0,SPNDEN=1,SLNDEN=1,SCKDEN=
1 */
 RSPI1.SPCMD1.WORD = 0x070D; /* RSPIコマンドレジスタ1 */
 RSPI1.SPCMD2.WORD = 0x070D; /* RSPIコマンドレジスタ2 */
 RSPI1.SPCMD3.WORD = 0x070D; /* RSPIコマンドレジスタ3 */
 RSPI1.SPCMD4.WORD = 0x070D; /* RSPIコマンドレジスタ4 */

 RSPI1.SPCMD5.WORD = 0x070D; /* RSPIコマンドレジスタ5 */
 RSPI1.SPCMD6.WORD = 0x070D; /* RSPIコマンドレジスタ6 */
 RSPI1.SPCMD7.WORD = 0x070D; /* RSPIコマンドレジスタ7 */

 /* RSPI1のポート設定 */
 PORTE.DDR.BIT.B7 = 0;
 PORTE.ICR.BIT.B7 = 1; /* PE7(MISOB)の入力バッファ有効 */
 PORTE.PCR.BIT.B7 = 1; /* PE7(MISOB)のプルアップ抵抗有効 */
#if SPI_SLAVE_MAX == 4
 IOPORT.PFHSPI.BYTE = 0xFF; /* RSPIS=1,RSPCKE=1,MOSIE=1,MISOE=1,SSL0E=1,SSL1E=1,SSL2E=1,SSL3E=1（SSLB0～S
SLB3有効） */
#elif SPI_SLAVE_MAX == 3;
 IOPORT.PFHSPI.BYTE = 0x7F; /* RSPIS=1,RSPCKE=1,MOSIE=1,MISOE=1,SSL0E=1,SSL1E=1,SSL2E=1,SSL3E=0（SSLB0～S
SLB2有効） */
#elif SPI_SLAVE_MAX == 2;
 IOPORT.PFHSPI.BYTE = 0x3F; /* RSPIS=1,RSPCKE=1,MOSIE=1,MISOE=1,SSL0E=1,SSL1E=1,SSL2E=0,SSL3E=0（SSLB0～S
SLB1有効） */
#else
 IOPORT.PFHSPI.BYTE = 0x1F; /* RSPIS=1,RSPCKE=1,MOSIE=1,MISOE=1,SSL0E=1,SSL1E=0,SSL2E=0,SSL3E=0（SSLB0の
み有効） */
#endif
 /* RSPI1制御レジスタ設定 */
 RSPI1.SPCR.BYTE = 0xB8; /* SPMS=0,TXMD=0,MODFEN=0,MSTR=1,SPEIE=1,SPTIE=1,SPE=0,SPRIE=1 */
 RSPI1.SPCR.BYTE; /* SPCR空読み */

 /* RSPI1割り込み優先順位セット */
 IPR(RSPI1,) = 4; /* SPEI1,SPRI1,SPTI1,SPII1共通 */
 /* RSPI1割り込み要求ステータスフラグクリア */
 IR(RSPI1, SPTI1) = 0;
 IR(RSPI1, SPRI1) = 0;
 IR(RSPI1, SPEI1) = 0;
 /* RSPI1割り込み禁止 */
 IEN(RSPI1, SPTI1) = 0;
 IEN(RSPI1, SPRI1) = 0;
 /* RSPI1エラー割り込み許可 */
 IEN(RSPI1, SPEI1) = 1;
}

/**/
/* SPI通信開始／停止 */
/**/
/* nSlaveNum = スレーブ番号（SPI_SLAVE0～SPI_SLAVE_MAX-1） */
/* SPI_DISABLE指定で通信停止 */

void Enable_SPI1(int nSlaveNum)
{
 /* 有効なスレーブ番号の場合（＝RSPI通信開始） */
 if((SPI_SLAVE0 <= nSlaveNum) && (nSlaveNum < SPI_SLAVE_MAX)){
 /* スレーブ選択信号セット */
 RSPI1.SPCMD0.BIT.SSLA = (unsigned short)nSlaveNum;
 /* ダミーリード */
 RSPI1.SPDR.WORD.H;
 /* RSPIステータスクリア */
 RSPI1.SPSR.BYTE = 0xA0;
 /* SPI動作許可 */
 RSPI1.SPCR.BIT.SPE = 1;
 }
 /* 無効なスレーブ番号の場合（＝RSPI通信停止） */
 else{
 /* SPI動作停止 */
 RSPI1.SPCR.BIT.SPE = 0;
 /* 送信・受信割り込み禁止 */
 IEN(RSPI1, SPTI1) = 0;
 IEN(RSPI1, SPRI1) = 0;
 }
}

/**/
/* 送信／受信／エラー割り込み処理(RSPI1) */
/**/

/* 送信割り込み ***/

#pragma interrupt (Int_RSPI1_SPTI1)
void Int_RSPI1_SPTI1(void)
{
 /* 指定バイト数まで送信する */
 if(st_dwSendPtr < st_dwSendSize){
 RSPI1.SPDR.WORD.H = (WORD)*(st_pSendBuff + st_dwSendPtr);
 }
 /* 指定バイト数送信した後はダミー送信 */
 else{
 RSPI1.SPDR.WORD.H = 0x0000; /* ダミー値送信 */
 }
 /* 送信＋受信バイト数まで送信したら終了 */
 st_dwSendPtr++;
 if(st_dwSendPtr >= st_dwTrcvSize){

 /* RSPI1送信割り込み禁止 */
 IEN(RSPI1, SPTI1) = 0;
 }
}

/* 受信割り込み ***/

#pragma interrupt (Int_RSPI1_SPRI1)
void Int_RSPI1_SPRI1(void)
{
 WORD wRxData;

 /* 受信 */
 wRxData = RSPI1.SPDR.WORD.H;
 st_dwRecvPtr++;
 /* 半二重なので送信完了までは無視 */
 if(st_dwRecvPtr <= st_dwSendSize){
 /* 受信データがない場合 */
 if(st_dwRecvPtr >= st_dwTrcvSize){
 st_byRecvComple = 1;
 /* RSPI1割り込み禁止 */
 IEN(RSPI1, SPRI1) = 0;
 IEN(RSPI1, SPTI1) = 0;
 }
 return;
 }
 /* 受信データをバッファに格納 */
 *(st_pRecvBuff + st_dwRecvPtrR) = (BYTE)wRxData;
 st_dwRecvPtrR++;
 /* 指定バイト数受信したら終了 */
 if(st_dwRecvPtrR >= st_dwRecvSize){
 st_byRecvComple = 1;
 /* RSPI1割り込み禁止 */
 IEN(RSPI1, SPRI1) = 0;
 IEN(RSPI1, SPTI1) = 0;
 }
}

/* エラー割り込み ***/

#pragma interrupt (Int_RSPI1_SPEI1)
void Int_RSPI1_SPEI1(void)
{
 st_byRSPI1_OVRF = RSPI1.SPSR.BYTE;
 RSPI1.SPSR.BYTE = 0xA0;

 /* オーバランエラーフラグのみ残す（他は関係ない） */
 st_byRSPI1_OVRF &= 0x01;
 if(st_byRSPI1_OVRF != 0){ /* ※関数Tranceive_SPI1で異常処理される。 */
 /* ダミーリード */
 RSPI1.SPDR.WORD.H;
 /* RSPI1割り込み禁止 */
 IEN(RSPI1, SPRI1) = 0;
 IEN(RSPI1, SPTI1) = 0;
 }
}

/**/
/* SPIブロック送受信 */
/**/

BOOL Tranceive_SPI1(WORD wSndSize, WORD wRcvSize, const BYTE* pSndData, BYTE* pRcvBuff)
{
 /* フラグ初期化 */
 st_byRecvComple = 0; /* 送受信完了フラグ */
 st_byRSPI1_OVRF = 0; /* ステータスレジスタSPSR */
 st_dwSendSize = (DWORD)wSndSize; /* 指定の送信バイト数 */
 st_pSendBuff = (BYTE*)pSndData; /* 送信データポインタ */
 st_dwRecvPtr = 0L; /* 全受信済みバイト数 */
 st_dwRecvPtrR = 0L; /* 正味の受信済みバイト数 */
 st_dwRecvSize = (DWORD)wRcvSize; /* 指定の受信データバイト数 */
 st_pRecvBuff = pRcvBuff; /* 受信データアドレス */
 st_dwTrcvSize = (DWORD)(wSndSize + wRcvSize); /* 送信＋受信バイト数 */
 /* RSPI1割り込み許可 */
 IEN(RSPI1, SPTI1) = 1;
 IEN(RSPI1, SPRI1) = 1;

 /* 送受信完了を待つ */
 wTmrTxRxWait = SPI_TXTIME;
 while(st_byRecvComple == 0){
 if((wTmrTxRxWait == 0) || (st_byRSPI1_OVRF != 0)){
 /* RSPI1割り込み禁止 */
 IEN(RSPI1, SPTI1) = 0;
 IEN(RSPI1, SPRI1) = 0;
 return FALSE;

 }
 }

 return TRUE;
}

/**/
/* SPI転送の初期化(RSPI1) */
/**/

void Init_SPI1(void)
{
 /* RSPI1の初期設定 */
 Init_RSPI1();
 /* フラグ初期化 */
 st_byRecvComple = 0; /* 送受信完了フラグ */
 st_byRSPI1_OVRF = 0; /* ステータスレジスタSPSR */
}

